Gotowa bibliografia na temat „Muscle regeneration”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Muscle regeneration”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Muscle regeneration"

1

Kami, Katsuya, and Emiko Senba. "In Vivo Activation of STAT3 Signaling in Satellite Cells and Myofibers in Regenerating Rat Skeletal Muscles." Journal of Histochemistry & Cytochemistry 50, no. 12 (2002): 1579–89. http://dx.doi.org/10.1177/002215540205001202.

Pełny tekst źródła
Streszczenie:
Although growth factors and cytokines play critical roles in skeletal muscle regeneration, intracellular signaling molecules that are activated by these factors in regenerating muscles have been not elucidated. Several lines of evidence suggest that leukemia inhibitory factor (LIF) is an important cytokine for the proliferation and survival of myoblasts in vitro and acceleration of skeletal muscle regeneration. To elucidate the role of LIF signaling in regenerative responses of skeletal muscles, we examined the spatial and temporal activation patterns of an LIF-associated signaling molecule, t
Style APA, Harvard, Vancouver, ISO itp.
2

Gulati, Adarshk. "Pattern of skeletal muscle regeneration after reautotransplantation of regenerated muscle." Development 92, no. 1 (1986): 1–10. http://dx.doi.org/10.1242/dev.92.1.1.

Pełny tekst źródła
Streszczenie:
Autotransplantation of rat extensor digitorum longus muscle results in initial myofibre degeneration and subsequent regeneration from precursor myosatellite cells. To determine what effect a reinjury would have on the regenerative response, in the present,study, once transplanted and regenerated muscles were reinjured by reautotransplantion. In rats, four weeks after initial transplantation, when the regeneration was complete, the extensor digitorum longus muscle was transplanted again and the pattern of regeneration in reautotransplanted and once auto transplanted muscles was compared. Muscle
Style APA, Harvard, Vancouver, ISO itp.
3

Carlsen, R. C., D. Kerlin, and S. D. Gray. "Regeneration and revascularization of a nerve-intact skeletal muscle graft in the spontaneously hypertensive rat." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 270, no. 1 (1996): R153—R161. http://dx.doi.org/10.1152/ajpregu.1996.270.1.r153.

Pełny tekst źródła
Streszczenie:
Skeletal muscles in hypertensive subjects develop an increased resistance to insulin that reduces their ability to incorporate glucose and synthesize glycogen. Insulin is an anabolic hormone in muscle, and muscle insulin receptors bind the growth factor, insulin-like growth factor I (IGF-I), an important contributor to muscle development and regeneration. An increase in insulin resistance in hypertensive subjects might produce muscle atrophy and weakness or limit regenerative growth after injury. Regenerative muscle growth was assessed in 24-to 26-wk-old spontaneously hypertensive rats (SHR) a
Style APA, Harvard, Vancouver, ISO itp.
4

Banerji, Christopher R. S., Don Henderson, Rabi N. Tawil, and Peter S. Zammit. "Skeletal muscle regeneration in facioscapulohumeral muscular dystrophy is correlated with pathological severity." Human Molecular Genetics 29, no. 16 (2020): 2746–60. http://dx.doi.org/10.1093/hmg/ddaa164.

Pełny tekst źródła
Streszczenie:
Abstract Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant myopathy characterized by slowly progressive skeletal muscle weakness and wasting. While a regenerative response is often provoked in many muscular dystrophies, little is known about whether a regenerative response is regularly elicited in FSHD muscle, prompting this study. For comparison, we also examined the similarly slowly progressing myotonic dystrophy type 2 (DM2). To first investigate regeneration at the transcriptomic level, we used the 200 human gene Hallmark Myogenesis list. This myogenesis biomarker was
Style APA, Harvard, Vancouver, ISO itp.
5

Zimowska, Małgorzata, Karolina Archacka, Edyta Brzoska, et al. "IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration." International Journal of Molecular Sciences 21, no. 9 (2020): 3302. http://dx.doi.org/10.3390/ijms21093302.

Pełny tekst źródła
Streszczenie:
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the
Style APA, Harvard, Vancouver, ISO itp.
6

Dadgar, Sherry, Zuyi Wang, Helen Johnston, et al. "Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy." Journal of Cell Biology 207, no. 1 (2014): 139–58. http://dx.doi.org/10.1083/jcb.201402079.

Pełny tekst źródła
Streszczenie:
We sought to determine the mechanisms underlying failure of muscle regeneration that is observed in dystrophic muscle through hypothesis generation using muscle profiling data (human dystrophy and murine regeneration). We found that transforming growth factor β–centered networks strongly associated with pathological fibrosis and failed regeneration were also induced during normal regeneration but at distinct time points. We hypothesized that asynchronously regenerating microenvironments are an underlying driver of fibrosis and failed regeneration. We validated this hypothesis using an experime
Style APA, Harvard, Vancouver, ISO itp.
7

Launay, Thierry, Philippe Noirez, Gillian Butler-Browne, and Onnik Agbulut. "Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 290, no. 6 (2006): R1508—R1514. http://dx.doi.org/10.1152/ajpregu.00486.2005.

Pełny tekst źródła
Streszczenie:
In the literature, there is an ambiguity as to the respective roles played by calcineurin phosphatase activity (CPA) and muscle innervation in the reestablishment of the slow-twitch muscle phenotype after muscle regeneration in different species. In this study, we wanted to determine the role of calcineurin and muscle innervation on the appearance and maintenance of the slow phenotype during mouse muscle regeneration. The pattern of myosin expression and CPA was analyzed in adult ( n = 15), regenerating ( n = 45) and denervated-regenerating ( n = 32) slow-twitch soleus and fast-twitch extensor
Style APA, Harvard, Vancouver, ISO itp.
8

Zullo, Letizia, Matteo Bozzo, Alon Daya, et al. "The Diversity of Muscles and Their Regenerative Potential across Animals." Cells 9, no. 9 (2020): 1925. http://dx.doi.org/10.3390/cells9091925.

Pełny tekst źródła
Streszczenie:
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, i
Style APA, Harvard, Vancouver, ISO itp.
9

Anderson, Judy E., Laura M. McIntosh, Andrea N. Moor (neé Pernitsky), and Zipora Yablonka–Reuveni. "Levels of MyoD Protein Expression Following Injury of mdx and Normal Limb Muscle Are Modified by Thyroid Hormone." Journal of Histochemistry & Cytochemistry 46, no. 1 (1998): 59–67. http://dx.doi.org/10.1177/002215549804600108.

Pełny tekst źródła
Streszczenie:
Thyroid hormone (T3) affects muscle development and muscle regeneration. It also interacts with the muscle regulatory gene MyoD in culture and affects myoblast proliferation. We studied the localization of MyoD protein using a well-characterized polyclonal antibody for immunohistochemistry. Relative numbers of myogenic precursor cells per field were identified by their MyoD expression during muscle regeneration in normal and mdx dystrophic mice, with particular reference to the expression in mononuclear cells and myotubes at various T3 levels. In regeneration by normal muscles, relatively few
Style APA, Harvard, Vancouver, ISO itp.
10

Rahman, Fasih Ahmad, Sarah Anne Angus, Kyle Stokes, Phillip Karpowicz, and Matthew Paul Krause. "Impaired ECM Remodeling and Macrophage Activity Define Necrosis and Regeneration Following Damage in Aged Skeletal Muscle." International Journal of Molecular Sciences 21, no. 13 (2020): 4575. http://dx.doi.org/10.3390/ijms21134575.

Pełny tekst źródła
Streszczenie:
Regenerative capacity of skeletal muscle declines with age, the cause of which remains largely unknown. We investigated extracellular matrix (ECM) proteins and their regulators during early regeneration timepoints to define a link between aberrant ECM remodeling, and impaired aged muscle regeneration. The regeneration process was compared in young (three month old) and aged (18 month old) C56BL/6J mice at 3, 5, and 7 days following cardiotoxin-induced damage to the tibialis anterior muscle. Immunohistochemical analyses were performed to assess regenerative capacity, ECM remodeling, and the mac
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Muscle regeneration"

1

Ram, Umilla Bettina. "Role of ICL2 in skeletal muscle regeneration." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2024/2024ULILS058.pdf.

Pełny tekst źródła
Streszczenie:
Le muscle squelettique possède une importante capacité de régénération en réponse aux dommages causés par des blessures, des exercices intensifs ou des myopathies, grâce aux cellules souches musculaires (MuSCs) situées sous la lame basale des fibres en état de quiescence au repos. Suite à une lésion, ces cellules s'activent, prolifèrent et se différencient en myoblastes, lesquels fusionnent pour former de nouveaux myotubes. La régénération musculaire implique également un recrutement de cellules immunitaires qui sont essentielles à l'élimination des débris nécrotiques et au retour à l'homéosta
Style APA, Harvard, Vancouver, ISO itp.
2

Pillitteri, Paul J. "Regeneration of Rat Skeletal Muscle Following a Muscle Biopsy." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1118087917.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Nearing, Marie. "The Role of the Regenerating Protein Family on Skeletal Muscle Regeneration." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/268516.

Pełny tekst źródła
Streszczenie:
Skeletal muscle regeneration is dependent upon the influences of intrinsic and extrinsic factors that stimulate satellite cells. Regenerating proteins are upregulated at the onset of trauma or inflammation in the pancreas, gastrointestinal tract, liver, neural cells and other tissues. Studies have shown that Reg proteins have a mitogenic, anti-apoptotic and anti-inflammatory function in damaged tissues and is necessary for normal progression of regeneration. As skeletal muscle is also able to regenerate itself at a rapid rate, it seems highly likely that Reg proteins function to promote myo
Style APA, Harvard, Vancouver, ISO itp.
4

Baker, Brent A. "Characterization of skeletal muscle performance and morphology following acute and chronic mechanical loading paradigms." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5325.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--West Virginia University, 2007.<br>Title from document title page. Document formatted into pages; contains xii, 270 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
5

Charge, Sophie Barbara Pauline. "Skeletal muscle hypertrophy : its regulation and effect on muscle regeneration." Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340500.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Dyer, Kelly Anne. "Chracterisation of Mighty during Skeletal Muscle Regeneration." The University of Waikato, 2006. http://hdl.handle.net/10289/2243.

Pełny tekst źródła
Streszczenie:
Satellite cells are a distinct lineage of myogenic precursors that are responsible for the growth of muscle during post-natal life and for its repair after damage. During muscle growth and regeneration satellite cells are activated in response to growth signals from the environment, which induces the expression of one or both of the two MRFs, Myf-5 or MyoD. Activated satellite cells migrate to the site of injury and proliferate before these transcription factors go on to activate transcription of myogenic genes. The myoblasts can then adopt one of two fates. Some myoblasts initiate terminal di
Style APA, Harvard, Vancouver, ISO itp.
7

Markert, Chad D. "Ultrasound and exercise in skeletal muscle regeneration." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1091304498.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Ohio State University, 2004.<br>Document formatted into pages. Includes bibliographical references. Abstract available online via OhioLINK's ETD Center; full text release delayed at author's request until 2005 Aug. 2.
Style APA, Harvard, Vancouver, ISO itp.
8

LANGONE, FRANCESCA. "Perturbation of muscle regeneration by small molecules." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/202067.

Pełny tekst źródła
Streszczenie:
Skeletal muscle plays fundamental roles for locomotion, posture maintenance and breathing and to preserve its function, skeletal muscle has developed a remarkable capacity to regenerate also after severe damage. Several studies aimed at understanding the cellular and molecular mechanisms involved in muscle repair that are deregulated in muscular dystrophy-associated fibrosis and in aging-related muscle dysfunction. However, the cellular and molecular effectors of muscle repair remain largely unknown. This doctoral thesis aims at understanding molecular mechanisms and the interplay between diff
Style APA, Harvard, Vancouver, ISO itp.
9

Vidal, Iglesias Berta. "The fibrinolitys system in muscle regeneration and dystrophy." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7143.

Pełny tekst źródła
Streszczenie:
Duchenne muscular dystrophy (DMD) is a fatal degenerative disorder of locomotor and respiratory muscles, in which myofibers are progressively replaced by non-muscular fibrotic tissue. Here, we show that fibrin/ogen accumulates in dystrophic muscles of DMD patients and of the mdx mouse model of DMD. Genetic loss or pharmacological depletion of fibrin/ogen in mdx mice attenuated muscular dystrophy progression and improved locomotor capacity. More importantly, fibrin/ogen depletion reduced fibrosis in mdx mouse diaphragm. Our data indicate that fibrin/ogen, through induction of IL-1 Ò, drives the
Style APA, Harvard, Vancouver, ISO itp.
10

Chang, C. F. "Studies of muscle regeneration in avian muscular dystrophy." Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/38258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Muscle regeneration"

1

Stefano, Schiaffino, and Partridge Terence, eds. Skeletal muscle repair and regeneration. Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kyba, Michael, ed. Skeletal Muscle Regeneration in the Mouse. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3810-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

B, Christ, Čihák Radomír, and European Anatomical Congress (7th : 1984 : Innsbruck, Austria), eds. Development and regeneration of skeletal muscles: Symposium held on occasion of the 7th European Anatomical Congress in Innsbruck, September 3, 1984. Karger, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

DeStefano, Rob. Muscle medicine: The revolutionary approach to maintaining, strengthening, and repairing your muscles and joints. Fireside, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

1895-1964, Blatz William Emet, and Kilborn Leslie G. 1895-1967, eds. Studies in the regeneration of denervated mammaliam muscle. J. de L. Taché, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

1935-, Oberpriller John O., Oberpriller Jean C. 1942-, Mauro Alexander, Rockefeller University, Cornell University Medical College, and Rosenfeld Heart Foundation, eds. The Development and regenerative potential of cardiac muscle. Harwood Academic Publishers, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hurme, Timo. Regeneration of injured skeletal muscle: An experimental study in rats. Turun yliopisto, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

White, Jason, and Gayle Smythe, eds. Growth Factors and Cytokines in Skeletal Muscle Development, Growth, Regeneration and Disease. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27511-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Coulthard, Rosalind Jane. The roles of motoneurons and their muscle targets in synaptogenesis during regeneration of a foreign transplant. National Library of Canada, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Childers, Martin K., ed. Regenerative Medicine for Degenerative Muscle Diseases. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3228-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Muscle regeneration"

1

Canale, Enrico D., Gordon R. Campbell, Joseph J. Smolich, and Julie H. Campbell. "Regeneration." In Cardiac Muscle. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-50115-9_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schmalbruch, H. "Development, Regeneration, Growth." In Skeletal Muscle. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82551-4_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sevivas, Nuno, Guilherme França, Nuno Oliveira, et al. "Biomaterials for Tendon Regeneration." In Muscle and Tendon Injuries. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54184-5_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mittlmeier, Thomas, and Ioannis Stratos. "Muscle and Ligament Regeneration." In Regenerative Medicine. Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9075-1_38.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mittlmeier, Thomas, and Ioannis Stratos. "Muscle and Ligament Regeneration." In Regenerative Medicine. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5690-8_42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kim, Johnny, and Thomas Braun. "Skeletal Muscle Stem Cells for Muscle Regeneration." In Methods in Molecular Biology. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1453-1_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ambrosio, Fabrisia, Yong Li, Arvydas Usas, Michael Boninger L., and Johnny Huard. "Muscle Repair after Injury and Disease." In Musculoskeletal Tissue Regeneration. Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-239-7_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cugat, R., E. Alentorn-Geli, J. M. Boffa, et al. "Growth Factor Therapy for Tendon Regeneration." In Muscle and Tendon Injuries. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54184-5_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Myers, Christopher. "Skeletal Muscle Formation, Regeneration, and Recovery from Injury." In Skeletal Muscle Physiology. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47065-3_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pipalia, Tapan G., Sami H. A. Sultan, Jana Koth, Robert D. Knight, and Simon M. Hughes. "Skeletal Muscle Regeneration in Zebrafish." In Methods in Molecular Biology. Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3036-5_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Muscle regeneration"

1

Huang, Ping, Timon Cheng-Yi Liu, Xiao-Yang Xu, et al. "Photobiomodulation on Muscle Regeneration." In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381920.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wulan, S. M. Mei. "Increasing Muscle Regeneration in Response to Exercise." In International Meeting on Regenerative Medicine. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007316000760080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Soker, Shay, Dawn Delo, Samira Neshat, and Anthony Atala. "Amniotic Fluid Derived Stem Cells for Cardiac Muscle Therapies." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192492.

Pełny tekst źródła
Streszczenie:
Many forms of pediatric and adult heart disease are accompanied by high morbidity and mortality, as the heart muscle has limited regenerative potential. Cell therapy has been proposed as a means to promote the regeneration of injured heart muscle. We have established lines of broad spectrum multipotent stem cells derived from primitive fetal cells present in human amniotic fluid (hAFS) cells (1). AFS cells offer several advantages: They are easy to isolate and grow (no feeder layers needed), are highly expansive including clonal growth and they can differentiate into all germ layers. In the cu
Style APA, Harvard, Vancouver, ISO itp.
4

McKeon-Fischer, K. D., D. H. Flagg, J. H. Rossmeisl, A. R. Whittington, and J. W. Freeman. "Electroactive, Multi-Component Scaffolds for Skeletal Muscle Regeneration." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93197.

Pełny tekst źródła
Streszczenie:
After loss of skeletal muscle function due to traumatic injuries, muscle healing may result in scar tissue formation and reduced function. A restoration method is needed to create a bioartificial muscle that supports cell growth. An electroactive, coaxial electrospun scaffold was created using PCL, MWCNT, and a PAA/PVA hydrogel. This scaffold was conductive and displayed an actuation response when electrically stimulated. Rat primary skeletal muscle cells were biocompatible with the scaffold and displayed multi-nucleated constructs with actin interaction. MWCNT toxicity was tested using a sing
Style APA, Harvard, Vancouver, ISO itp.
5

Spadaccio, Cristiano, Alberto Rainer, Stefano De Porcellinis, et al. "Muscle Reconstruction and Regeneration Using Biodegradable Scaffolds." In 2010 Advanced Technologies for Enhancing Quality of Life (ATEQUAL). IEEE, 2010. http://dx.doi.org/10.1109/atequal.2010.19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cheesbrough, Aimee, Ivo Lieberam, and Wenhui Son. "Biobased Elastomer Nanofibers for Guiding Skeletal Muscle Regeneration." In The 7th World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2022. http://dx.doi.org/10.11159/nddte22.134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Errico, V., R. Molinaro, C. Gargioli, et al. "Cells Microenvironment Engineering - Multiphoton Absorption for Muscle Regeneration Optimization." In 9th International Conference on Biomedical Electronics and Devices. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005790402410246.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Willett, Nick J., M. Alice Li, Brent A. Uhrig, Gordon L. Warren, and Robert E. Guldberg. "Muscle Injury Attenuates BMP-2 Mediated Tissue Regeneration in a Novel Rat Model of Composite Bone and Muscle Injury." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53589.

Pełny tekst źródła
Streszczenie:
Musculoskeletal diseases and injuries are a major burden on society, representing the most common cause of pain and impaired function worldwide. Composite injuries involving bone and the surrounding soft tissue comprise one of the most challenging musculoskeletal conditions to return to normal function. During repair of these injuries there is a loss of the synergistic interactions between adjacent tissues resulting in impaired bone regeneration. Additionally, local soft tissue ischemia may also be a contributing factor to increased infection rates observed in severe composite tissue injuries.
Style APA, Harvard, Vancouver, ISO itp.
9

Cassino, Theresa R., Masaho Okada, Lauren M. Drowley, Joseph Feduska, Johnny Huard, and Philip R. LeDuc. "Using Mechanical Environment to Enhance Stem Cell Transplantation in Muscle Regeneration." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176545.

Pełny tekst źródła
Streszczenie:
Muscle-derived stem cell (MDSC) transplantation has shown potential as a therapy for cardiac and skeletal muscle dysfunction in diseases such as Duchenne muscular dystrophy (DMD). In this study we explore mechanical environment and its effects on MDSCs engraftment into cardiac and skeletal muscle in mdx mice and neoangiogenesis within the engraftment area. We first looked at transplantation of the same number of MDSCs into the heart and gastrocnemius (GN) muscle of dystrophic mice and the resulting dystrophin expression. We then explored neoangiogenesis within the engraftments through quantifi
Style APA, Harvard, Vancouver, ISO itp.
10

Mofarrahi, M., G. Danialou, and SN Hussain. "Regulation of Skeletal Muscle Regeneration by Angiopoietin-1 (Ang-1)." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a6134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Muscle regeneration"

1

Gonzalez-Cadavid, Nestor F. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration After Injury. Addendum. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada586854.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Goeckeritz, Joel, Nathan Schank, Ryan L Wood, Beverly L Roeder, and Alonzo D Cook. Use of Urinary Bladder Matrix Conduits in a Rat Model of Sciatic Nerve Regeneration after Nerve Transection Injury. Science Repository, 2022. http://dx.doi.org/10.31487/j.rgm.2022.03.01.

Pełny tekst źródła
Streszczenie:
Previous research has demonstrated the use of single-channel porcine-derived urinary bladder matrix (UBM) conduits in segmental-loss, peripheral nerve repairs as comparable to criterion-standard nerve autografts. This study aimed to replicate and expand upon this research with additional novel UBM conduits and coupled therapies. Fifty-four Wistar Albino rats were divided into 6 groups, and each underwent a surgical neurectomy to remove a 7-millimeter section of the sciatic nerve. Bridging of this nerve gap and treatment for each group was as follows: i) reverse autograft—the segmented nerve wa
Style APA, Harvard, Vancouver, ISO itp.
3

Goeckeritz, Joel, Nathan Schank, Ryan L Wood, Beverly L Roeder, and Alonzo D Cook. Use of Urinary Bladder Matrix Conduits in a Rat Model of Sciatic Nerve Regeneration after Nerve Transection Injury. Science Repository, 2022. http://dx.doi.org/10.31487/j.rgm.2022.03.01.sup.

Pełny tekst źródła
Streszczenie:
Previous research has demonstrated the use of single-channel porcine-derived urinary bladder matrix (UBM) conduits in segmental-loss, peripheral nerve repairs as comparable to criterion-standard nerve autografts. This study aimed to replicate and expand upon this research with additional novel UBM conduits and coupled therapies. Fifty-four Wistar Albino rats were divided into 6 groups, and each underwent a surgical neurectomy to remove a 7-millimeter section of the sciatic nerve. Bridging of this nerve gap and treatment for each group was as follows: i) reverse autograft—the segmented nerve wa
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!