Artykuły w czasopismach na temat „NACA0012”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „NACA0012”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhao, Liangyu, and Shuxing Yang. "Influence of Thickness Variation on the Flapping Performance of Symmetric NACA Airfoils in Plunging Motion." Mathematical Problems in Engineering 2010 (2010): 1–19. http://dx.doi.org/10.1155/2010/675462.
Pełny tekst źródłaYawara, Eka, Yohannes Agus Jayatun, and Daru Sugati. "Pengaruh Profil Sudu Terhadap Koefisien Daya Turbin Gorlov." KURVATEK 1, no. 2 (2017): 7–11. http://dx.doi.org/10.33579/krvtk.v1i2.235.
Pełny tekst źródłaSutikno, Priyono, Yuliandra Syahrial Nurdin, Doddy Risqi, Eki Mardani, and Erpinus Sihombing. "Experimental of Three Parallel Water Current Turbine with Optimized Straight Blades and Using Flow Concentrator Channeling Device to Augmented Performance and Self-Starting Capability." Applied Mechanics and Materials 758 (April 2015): 153–58. http://dx.doi.org/10.4028/www.scientific.net/amm.758.153.
Pełny tekst źródłaSyafei, M. Hilman Gumelar, Ragil Tri Indrawati, and Tanwir Ahmad Farhan. "Implementation of the Airfoil parameterization PARSEC Method in Python." Jurnal Rekayasa Mesin 17, no. 3 (2022): 485. http://dx.doi.org/10.32497/jrm.v17i3.4000.
Pełny tekst źródłaJiang, Zhongyuan, Jiangming Ding, and Zhourui Li. "Study on the Impact of Tail Wing Profiles on the Resistance Characteristics of Amphibious Vehicles." Journal of Marine Science and Engineering 12, no. 5 (2024): 780. http://dx.doi.org/10.3390/jmse12050780.
Pełny tekst źródłaGhadimi, Parviz, Saman Kermani, and Mohammad A. Feizi Chekab. "Numerical Hydroacoustic Analysis of NACA Foils in Marine Applications and Comparison of Their Acoustic Behavior." ISRN Mechanical Engineering 2013 (July 30, 2013): 1–12. http://dx.doi.org/10.1155/2013/714363.
Pełny tekst źródłaLam, K., Y. F. Lin, Y. Liu, and L. Zou. "Numerical Investigation of Flow past a Wavy Airfoil." Applied Mechanics and Materials 110-116 (October 2011): 4269–75. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.4269.
Pełny tekst źródłaTaslin, Puteri Nurfarah Adawiyah, Aliashim Albani, Mohd Zamri Ibrahim, Mohd Azlan Musa, Zulkifli Mohd Yusop, and Mohd Afifi Jusoh. "Computational Fluid Dynamics Analysis of Seven Selected Hydrofoils for Different Angle of Attack." Jurnal Kejuruteraan si4, no. 1 (2021): 71–75. http://dx.doi.org/10.17576/jkukm-2021-si4(1)-09.
Pełny tekst źródłaLee, Seongkyu. "The Effect of Airfoil Shape on Trailing Edge Noise." Journal of Theoretical and Computational Acoustics 27, no. 02 (2019): 1850020. http://dx.doi.org/10.1142/s2591728518500202.
Pełny tekst źródłaLv, Hongqing, Zhenqing Wang, Jiahao Chen, and Lei Xu. "The Influence of Boundary Layer Caused by Riblets on the Aircraft Surface." Applied Sciences 10, no. 11 (2020): 3686. http://dx.doi.org/10.3390/app10113686.
Pełny tekst źródłaSilva Maffei, Felipe, Gabriel Angelo, Silvia Maria Stortini González Velázquez, Sergio Luis Rabelo de Almeida, Jorge Alexandre Onoda Pessanha, and Edvaldo Angelo. "Numerical Analysis of a Flow over a Naca0015 Airfoil Containing the Flap and Gurney Flap Elements." International Journal of Scientific Research and Management 10, no. 01 (2022): 731–46. http://dx.doi.org/10.18535/ijsrm/v10i1.ec03.
Pełny tekst źródłaRaghunathan, S., R. D. Mitchell, and M. A. Gillan. "Transonic shock oscillations on NACA0012 aerofoil." Shock Waves 8, no. 4 (1998): 191–202. http://dx.doi.org/10.1007/s001930050113.
Pełny tekst źródłaRudresh, M., S. Rohith, T. N. Rohith, R. Darshan, and H. V. Dilip. "Aerodynamic Optimization of Wing by Camber Morphing using Cfd." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 5 (2020): 122–30. https://doi.org/10.35940/ijeat.E9396.069520.
Pełny tekst źródłaENOMOTO, Shunji, Hiroyuki KATO, Hiroki URA, Yuzuru YOKOKAWA, and Kazuomi YAMAMOTO. "Large Eddy Simulation of NACA0012 wing tip vortices." Proceedings of the Fluids engineering conference 2004 (2004): 191. http://dx.doi.org/10.1299/jsmefed.2004.191.
Pełny tekst źródłaAçıkel, Halil Hakan, Melike Tosun, Mustafa Serdar Genç, and Kemal Koca. "Numerical investigation on NACA0012 airfoil with tubercular structure." EPJ Web of Conferences 269 (2022): 01001. http://dx.doi.org/10.1051/epjconf/202226901001.
Pełny tekst źródłaDass, Lakshuman, Anas Abdul Rahman, Kumaran Rajendran, and Gisrina Elin Suhri. "Numerical analysis of wake turbulence between hybrid tidal turbine and hypothetical actuator cylinder for shallow water with low velocity conditions." Journal of Mechanical Engineering and Sciences 16, no. 1 (2022): 8673–90. http://dx.doi.org/10.15282/jmes.16.1.2022.03.0686.
Pełny tekst źródłaCaicedo, Edison H., and Muhammad S. Virk. "Numerical Study of NACA 0012 Aeroacoustics Response for Normal and Icing Conditions." Applied Mechanics and Materials 875 (January 2018): 89–93. http://dx.doi.org/10.4028/www.scientific.net/amm.875.89.
Pełny tekst źródłaPeng, Zhi Ling. "Flow Field Simulation of Airfoil and Analysis of Vibration Modal Based on ANSYS." Advanced Materials Research 268-270 (July 2011): 581–83. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.581.
Pełny tekst źródłaMula, Ayat, and Mohammed Abdulwahid. "Numerical Simulation of the Aerodynamic Characteristics of NACA0012 Airfoil Based on Operational Parameters." Basrah journal for engineering science 23, no. 1 (2023): 81–89. http://dx.doi.org/10.33971/bjes.23.1.11.
Pełny tekst źródłaBhogle, Prathmesh. "Performance Testing of NACA0012 Aerofoil by Providing Dimple Surface." International Journal for Research in Applied Science and Engineering Technology V, no. IV (2017): 1284–87. http://dx.doi.org/10.22214/ijraset.2017.4229.
Pełny tekst źródłaOHTAKE, Tomohisa. "Flow Field around NACA0012 Airfoil in Low Reynolds Numbers." JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 64, no. 2 (2016): 123–30. http://dx.doi.org/10.2322/jjsass.64.123.
Pełny tekst źródłaOHTAKE, Tomohisa, and Tatsuo MOTOHASHI. "Flow Field around NACA0012 Airfoil at Low Reynolds Numbers." JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 57, no. 669 (2009): 397–404. http://dx.doi.org/10.2322/jjsass.57.397.
Pełny tekst źródłaIMAMURA, Taro, Shunji ENOMOTO, and Kazuomi YAMAMOTO. "Noise Simulation around NACA0012 Wingtip using Large Eddy Simulation." TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 55, no. 4 (2012): 214–21. http://dx.doi.org/10.2322/tjsass.55.214.
Pełny tekst źródłaGoto, Naoki, Hideaki Suetsuna, Makoto Iida, and Chuichi Arakawa. "1205 NOISE ANALYSIS OF NACA0012 TRAIKING EDGE USING LES." Proceedings of the Fluids engineering conference 2009 (2009): 387–88. http://dx.doi.org/10.1299/jsmefed.2009.387.
Pełny tekst źródłaNaeem, Samara Munaem. "Structural and Stress Analysis of NACA0012 Wing Using SolidWorks." Mathematical Modelling of Engineering Problems 11, no. 8 (2024): 2181–86. http://dx.doi.org/10.18280/mmep.110820.
Pełny tekst źródłaKarim, Md Mashud, and Mohammad Shakil Ahmmed. "Numerical study of periodic cavitating flow around NACA0012 hydrofoil." Ocean Engineering 55 (December 2012): 81–87. http://dx.doi.org/10.1016/j.oceaneng.2012.06.034.
Pełny tekst źródłaRodríguez, I., O. Lehmkuhl, R. Borrell, and A. Oliva. "Direct numerical simulation of a NACA0012 in full stall." International Journal of Heat and Fluid Flow 43 (October 2013): 194–203. http://dx.doi.org/10.1016/j.ijheatfluidflow.2013.05.002.
Pełny tekst źródłaYemenici, Onur. "Experimental Investigation of the Flow Field around NACA0012 Airfoil." International Journal of Sciences Volume 2, no. 2013-08 (2013): 98–101. https://doi.org/10.5281/zenodo.3348422.
Pełny tekst źródłaLe, Nam Tuan Phuong, Ngoc Anh Vu, Le Tan Loc, and Tran Ngoc Thoai. "New temperature jump boundary condition in high-speed rarefied gas flow simulations." Vietnam Journal of Mechanics 39, no. 2 (2017): 165–76. http://dx.doi.org/10.15625/0866-7136/8760.
Pełny tekst źródłaSun, Zhaozheng, and Wenhui Yan. "Comparison of Different Turbulence Models in Numerical Calculation of Low-Speed Flow around NACA0012 Airfoil." Journal of Physics: Conference Series 2569, no. 1 (2023): 012075. http://dx.doi.org/10.1088/1742-6596/2569/1/012075.
Pełny tekst źródłaAbdus, Shabur, Hasan Afnan, and Ali Mohammad. "Comparison of Aerodynamic Behaviour between NACA 0018 and NACA 0012 Airfoils at Low Reynolds Number Through CFD Analysis." Advancement in Mechanical Engineering and Technology 3, no. 2 (2020): 1–8. https://doi.org/10.5281/zenodo.4003677.
Pełny tekst źródłaKouser, Taiba, Yongliang Xiong, Dan Yang, and Sai Peng. "Direct Numerical Simulations on the three-dimensional wake transition of flows over NACA0012 airfoil at Re = 1000." International Journal of Micro Air Vehicles 13 (January 2021): 175682932110556. http://dx.doi.org/10.1177/17568293211055656.
Pełny tekst źródłaBucur, I. O., D. E. Crunteanu, and M. C. Dombrovschi. "Numerical Analysis of Tilted Cavities Placement Effects on the Airfoils in Wind Turbine Systems." IOP Conference Series: Earth and Environmental Science 1375, no. 1 (2024): 012018. http://dx.doi.org/10.1088/1755-1315/1375/1/012018.
Pełny tekst źródłaLi, Juan, and Zi-Niu Wu. "Vortex force map method for viscous flows of general airfoils." Journal of Fluid Mechanics 836 (December 11, 2017): 145–66. http://dx.doi.org/10.1017/jfm.2017.783.
Pełny tekst źródłaEl Maani, Rabii, Soufiane Elouardi, Bouchaib Radi, and Abdelkhalak El Hami. "Multiobjective aerodynamic shape optimization of NACA0012 airfoil based mesh morphing." International Journal for Simulation and Multidisciplinary Design Optimization 11 (2020): 11. http://dx.doi.org/10.1051/smdo/2020006.
Pełny tekst źródłaINOUE, Naoki, and Akira MATSUMOTO. "Wake flow measurements of NACA0012 airfoil at low Reynolds numbers." Proceedings of Conference of Kanto Branch 2002.8 (2002): 501–2. http://dx.doi.org/10.1299/jsmekanto.2002.8.501.
Pełny tekst źródłaSAITO, Ryo, Takayuki YAMAGATA, and Nobuyuki FUJISAWA. "Influence of Inflow Turbulence on Discrete Frequency Noise of NACA0012." Proceedings of Conference of Hokuriku-Shinetsu Branch 2017.54 (2017): A032. http://dx.doi.org/10.1299/jsmehs.2017.54.a032.
Pełny tekst źródłaCao, Yi, and Shu-Jie Li. "Anisotropic capturing of compressible boundary layer flows over NACA0012 airfoil." Journal of Physics: Conference Series 3042, no. 1 (2025): 012012. https://doi.org/10.1088/1742-6596/3042/1/012012.
Pełny tekst źródłaYossri, Widad, Samah Ben Ayed, and Abdessattar Abdelkefi. "High-Fidelity Modeling and Investigation on Blade Shape and Twist Angle Effects on the Efficiency of Small-Scale Wind Turbines." Energies 16, no. 8 (2023): 3430. http://dx.doi.org/10.3390/en16083430.
Pełny tekst źródłaHan, Rong, Wei Liu, Xiao-Liang Yang, and Xing-Hua Chang. "Effect of NACA0012 Airfoil Pitching Oscillation on Flow Past a Cylinder." Energies 14, no. 17 (2021): 5582. http://dx.doi.org/10.3390/en14175582.
Pełny tekst źródłaLi, Bowen, Qiangqiang Sun, Dandan Xiao, and Wenqiang Zhang. "Numerical Investigation of the Aerofoil Aerodynamics with Surface Heating for Anti-Icing." Aerospace 9, no. 7 (2022): 338. http://dx.doi.org/10.3390/aerospace9070338.
Pełny tekst źródłaDouvi, Eleni C., and Dionissios P. Margaris. "Aerodynamic Performance Investigation under the Influence of Heavy Rain of a NACA 0012 Airfoil for Wind Turbine Applications." International Review of Mechanical Engineering (IREME) 6, no. 6 (2012): 1228–35. http://dx.doi.org/10.15866/ireme.v6i6.20761.
Pełny tekst źródłaTahani, Mojtaba, Mehran Masdari, Hamidreza Eivazi, and Massoud Tatar. "Assessment of turbulence models for transonic oscillating airfoil." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 11 (2017): 2603–28. http://dx.doi.org/10.1108/hff-04-2016-0142.
Pełny tekst źródłaR., Allocious Britto Rajkumar, Mohammed Raffic N., K. Ganesh Babu Dr., and Vignesh V. "Comparative Study on Effective Turbulence Model for NACA0012 Airfoil using Spalart – Allmaras as a Benchmark." International Journal of Trend in Scientific Research and Development 4, no. 3 (2020): 1049–56. https://doi.org/10.5281/zenodo.3892853.
Pełny tekst źródłaHasegawa, Hiroaki, and Shigeru Obayashi. "Active Stall Control System on NACA0012 by Using Synthetic Jet Actuator." Journal of Flow Control, Measurement & Visualization 07, no. 01 (2019): 61–72. http://dx.doi.org/10.4236/jfcmv.2019.71005.
Pełny tekst źródłaShi, Zhouhao, Zhanshan Xie, Weidong Shi, Qinghong Zhang, and Lingwei Tan. "Numerical Investigation on Cavitation Suppression of Microchannel over a NACA0012 Hydrofoil." Shock and Vibration 2021 (March 30, 2021): 1–10. http://dx.doi.org/10.1155/2021/6641839.
Pełny tekst źródłaCamacho, Emanuel, Fernando Neves, André Silva, and Jorge Barata. "Numerical Investigation of Frequency and Amplitude Influence on a Plunging NACA0012." Energies 13, no. 8 (2020): 1861. http://dx.doi.org/10.3390/en13081861.
Pełny tekst źródłaJha, Shailesh, Uddipta Gautam, S. Narayanan, and LA Kumaraswami Dhas. "Effect of Reynolds Number on the Aerodynamic Performance of NACA0012 Aerofoil." IOP Conference Series: Materials Science and Engineering 377 (June 2018): 012129. http://dx.doi.org/10.1088/1757-899x/377/1/012129.
Pełny tekst źródłaITGEL, Uguumur, Hiroaki HASEGAWA, and Shigeru OBAYASHI. "S0510404 Flow field Structure around a NACA0012 airfoil using Synthetic Jets." Proceedings of Mechanical Engineering Congress, Japan 2014 (2014): _S0510404——_S0510404—. http://dx.doi.org/10.1299/jsmemecj.2014._s0510404-.
Pełny tekst źródłaINOUE, Yuki, Yasunori NAGATA, Toshinori KOUCHI, and Shinichiro YANASE. "Two Dimensional RANS Analysis of NACA0012 Airfoil at Low Reynolds numbers." Proceedings of Conference of Chugoku-Shikoku Branch 2019.57 (2019): 515. http://dx.doi.org/10.1299/jsmecs.2019.57.515.
Pełny tekst źródła