Gotowa bibliografia na temat „Nanophotonic devices”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nanophotonic devices”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Nanophotonic devices"

1

Volpyan, O. D., and A. I. Kuzmichev. "Nanoscale electron-photonic devices surface plasmonic polaritons." Electronics and Communications 16, no. 1 (2011): 5–11. http://dx.doi.org/10.20535/2312-1807.2011.16.1.273644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Karabchevsky, Alina, Aviad Katiyi, Angeleene S. Ang, and Adir Hazan. "On-chip nanophotonics and future challenges." Nanophotonics 9, no. 12 (2020): 3733–53. http://dx.doi.org/10.1515/nanoph-2020-0204.

Pełny tekst źródła
Streszczenie:
AbstractOn-chip nanophotonic devices are a class of devices capable of controlling light on a chip to realize performance advantages over ordinary building blocks of integrated photonics. These ultra-fast and low-power nanoscale optoelectronic devices are aimed at high-performance computing, chemical, and biological sensing technologies, energy-efficient lighting, environmental monitoring and more. They are increasingly becoming an attractive building block in a variety of systems, which is attributed to their unique features of large evanescent field, compactness, and most importantly their a
Style APA, Harvard, Vancouver, ISO itp.
3

Bogue, Robert. "Nanophotonic technologies driving innovations in molecular sensing." Sensor Review 38, no. 2 (2018): 171–75. http://dx.doi.org/10.1108/sr-07-2017-0124.

Pełny tekst źródła
Streszczenie:
Purpose This paper aims to provide a technical insight into recent molecular sensor developments involving nanophotonic materials and phenomena. Design/methodology/approach Following an introduction, this highlights a selection of recent research activities involving molecular sensors based on nanophotonic technologies. It discusses chemical sensors, gas sensors and finally the role of nanophotonics in Raman spectroscopy. Brief concluding comments are drawn. Findings This shows that nanophotonic technologies are being applied to a diversity of molecular sensors and have the potential to yield
Style APA, Harvard, Vancouver, ISO itp.
4

Altug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.

Pełny tekst źródła
Streszczenie:
Nanophotonics excels at confining light into nanoscale optical mode volumes and generating dramatically enhanced light matter interactions. These unique aspects have been unveiling a plethora of fundamentally new optical phenomena, yet a critical issue ahead for nanophotonics is the development of novel devices and applications that can take advantage of these nano-scale effects. It is expected that nanophotonics will lead to disruptive technologies in energy harvesting, quantum and integrated photonics, optical computing and including biosensing. To this end, our research is focused on the ap
Style APA, Harvard, Vancouver, ISO itp.
5

Zhao, Dong, Zhelin Lin, Wenqi Zhu, et al. "Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces." Nanophotonics 10, no. 9 (2021): 2283–308. http://dx.doi.org/10.1515/nanoph-2021-0083.

Pełny tekst źródła
Streszczenie:
Abstract Nanophotonic devices, composed of metals, dielectrics, or semiconductors, enable precise and high-spatial-resolution manipulation of electromagnetic waves by leveraging diverse light–matter interaction mechanisms at subwavelength length scales. Their compact size, light weight, versatile functionality and unprecedented performance are rapidly revolutionizing how optical devices and systems are constructed across the infrared, visible, and ultraviolet spectra. Here, we review recent advances and future opportunities of nanophotonic elements operating in the ultraviolet spectral region,
Style APA, Harvard, Vancouver, ISO itp.
6

Shukur, Hanan Mahmood, Sirwan Kareem Jalal, Maher Waleed Saab, et al. "Nanophotonic Devices for Radio Over Fiber (RoF) Technologies in Telecommunications Networks." Radioelectronics. Nanosystems. Information Technologies. 16, no. 5 (2024): 589–604. http://dx.doi.org/10.17725/j.rensit.2024.16.589.

Pełny tekst źródła
Streszczenie:
Background: The combination of nanophotonic devices with Radio Over Fibre (RoF) technology has the potential to enhance telecommunications networks significantly. RoF technology, known for its ability to transport wireless data rapidly across optical fibres, has challenges such as capacity limitations and latency issues. Nanophotonic devices overcome these challenges using their small size and advanced ability to manipulate light. Objective: This study aims to investigate the capability of nanophotonic devices to improve the performance of RoF systems in telecommunications networks. It focuses
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Rui, Baicheng Zhang, Guan Wang, and Yachen Gao. "A Quick Method for Predicting Reflectance Spectra of Nanophotonic Devices via Artificial Neural Network." Nanomaterials 13, no. 21 (2023): 2839. http://dx.doi.org/10.3390/nano13212839.

Pełny tekst źródła
Streszczenie:
Nanophotonics use the interaction between light and subwavelength structures to design nanophotonic devices and to show unique optical, electromagnetic, and acoustic properties that natural materials do not have. However, this usually requires considerable expertise and a lot of time-consuming electromagnetic simulations. With the continuous development of artificial intelligence, people are turning to deep learning for designing nanophotonic devices. Deep learning models can continuously fit the correlation function between the input parameters and output, using models with weights and biases
Style APA, Harvard, Vancouver, ISO itp.
8

Van Thourhout, Dries, Thijs Spuesens, Shankar Kumar Selvaraja, et al. "Nanophotonic Devices for Optical Interconnect." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (2010): 1363–75. http://dx.doi.org/10.1109/jstqe.2010.2040711.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Monticone, Francesco, and Andrea Alù. "Metamaterial, plasmonic and nanophotonic devices." Reports on Progress in Physics 80, no. 3 (2017): 036401. http://dx.doi.org/10.1088/1361-6633/aa518f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

PARK, Hong-Kyu. "Nanophotonic Devices Using Semiconductor Nanowires." Physics and High Technology 20, no. 9 (2011): 27. http://dx.doi.org/10.3938/phit.20.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Nanophotonic devices"

1

Yu, Renwen. "Toward next-generation nanophotonic devices." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667314.

Pełny tekst źródła
Streszczenie:
In this thesis, we aim to explore several novel designs of nanostructures based on graphene to realize various functionalities. We briefly introduce the fundamental concepts and theoretical models used in this thesis in Chapter 1. Following the macroscopic analytical method outlined in the first chapter, in Chapter 2 we show that simple simulation methods allow us to accurately describe the optical response of plasmonic nanoparticles, including retardation effects, without the requirement of large computational resources. We then move to our proposed first type of device: optical modulators
Style APA, Harvard, Vancouver, ISO itp.
2

Heucke, Stephan F. "Advancing nanophotonic devices for biomolecular analysis." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-165294.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Garner, Brett William. "Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc6108/.

Pełny tekst źródła
Streszczenie:
The emergence of optical applications, such as lasers, fiber optics, and semiconductor based sources and detectors, has created a drive for smaller and more specialized devices. Nanophotonics is an emerging field of study that encompasses the disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical technology. In particular, nanophotonics explores optical processes on a nanoscale. This dissertation presents nanophotonic applications that incorporate various forms of the organic polymer N-isopropylacrylamide (NIPA) with inorganic semiconductors. This includes
Style APA, Harvard, Vancouver, ISO itp.
4

Garner, Brett William Neogi Arup. "Multifunctional organic-inorganic hybrid nanophotonic devices." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-6108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

John, Jimmy. "VO2 nanostructures for dynamically tunable nanophotonic devices." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI044.

Pełny tekst źródła
Streszczenie:
L'information est devenue le bien le plus précieux au monde. Ce mouvement vers la nouvelle ère de l'information a été propulsé par la capacité à transmettre l'information plus rapidement, à la vitesse de la lumière. Il est donc apparu nécessaire de mener des recherches plus poussées pour contrôler plus efficacement les supports d'information. Avec les progrès réalisés dans ce secteur, la plupart des technologies actuelles de contrôle de la lumière se heurtent à certains obstacles tels que la taille et la consommation d'énergie et sont conçues pour être passives ou sont limitées technologiqueme
Style APA, Harvard, Vancouver, ISO itp.
6

Deng, Sunan. "Nanophotonic devices based on graphene and carbon nanotubes." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/7041/.

Pełny tekst źródła
Streszczenie:
The research presented in the thesis includes the modelling and characterization of the novel devices based on graphene and carbon nanotube (CNT)-based buckypaper. The devices have great potential to be used in applications such as photovoltaics, optical communications/imaging and sensors for oil and gas industry. Graphene is a promising material with excellent optical and electrical properties. Research was carried out in utilizing graphene for photonic and plasmonic devices, including ultra-thin flat lens, plasmonic lens, and oil sensor. Buckypaper extends the applications of CNTs’ excellent
Style APA, Harvard, Vancouver, ISO itp.
7

Dahal, Rajendra Prasad. "Fabrication and characterization of III-nitride nanophotonic devices." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Naughton, Jeffrey R. "Neuroelectronic and Nanophotonic Devices Based on Nanocoaxial Arrays." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:108037.

Pełny tekst źródła
Streszczenie:
Thesis advisor: Michael J. Naughton<br>Thesis advisor: Michael J. Burns<br>Recent progress in the study of the brain has been greatly facilitated by the development of new measurement tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array, which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays ev
Style APA, Harvard, Vancouver, ISO itp.
9

Mangelinckx, Glenn. "Investigation of nanophotonic devices based on transformation optics : Transforming reflective optical devices." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42442.

Pełny tekst źródła
Streszczenie:
Transformation optics (TO), which provides an elegant way of molding the flow of light to one's wishes, has become one of the most popular photonics research areas during the last few years. Owing to stringent material parameters of transformation media, TO is in general not favourable for designing practical applications. The recent proposal of carpet cloak, a device that optically hides an anomaly on an otherwise at reflective surface, simplifies material requirements due to the relaxed boundary condition on the cloak's reflective border, thus providing the prospect of realization at optical
Style APA, Harvard, Vancouver, ISO itp.
10

Koos, Christian. "Nanophotonic devices for linear and nonlinear optical signal processing." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Nanophotonic devices"

1

Ibrahim, Abdulhalim, and ScienceDirect (Online service), eds. Integrated nanophotonic devices. William Andrew, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chen, Charlton J. Precision Tuning of Silicon Nanophotonic Devices through Post-Fabrication Processes. [publisher not identified], 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

M, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing and nanophotonic devices: 29-25 January, 2004, San Jose, California, USA. SPIE, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sudharsanan, Rengarajan. Quantum sensing and nanophotonic devices V: 20-23 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. SPIE, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

M, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing and nanophotonic devices II: 23-27 January 2005, San Jose, California, USA. SPIE, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sudharsanan, Rengarajan, Gail J. Brown, and M. Razeghi. Quantum sensing and nanophotonic devices VII: 24-28 January 2010, San Francisco, California, United States. SPIE, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Brown, Gail J., and M. Razeghi. Quantum sensing and nanophotonic devices IX: 22-26 January 2012, San Francisco, California, United States. Edited by Tournié Eric 1962- and SPIE (Society). SPIE, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sudharsanan, Rengarajan, Gail J. Brown, and M. Razeghi. Quantum sensing and nanophotonic devices VIII: 23-27 January 2011, San Francisco, California, United States. Edited by SPIE (Society). SPIE, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Razeghi, M. Quantum sensing and nanophotonic devices VI: 25-28 January 2009, San Jose, California, United States. Edited by SPIE (Society). SPIE, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

(Society), SPIE, ed. Quantum sensing and nanophotonic devices VI: 25-28 January 2009, San Jose, California, United States. SPIE, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Nanophotonic devices"

1

Yao, Kan, and Yuebing Zheng. "Nanophotonic Devices and Platforms." In Springer Series in Optical Sciences. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20473-9_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ledentsov, N. N. "Ultrafast Nanophotonic Devices For Optical Interconnects." In Future Trends in Microelectronics. John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649343.ch3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yang, Qing, Limin Tong, and Zhong Lin Wang. "Nanophotonic Devices Based on ZnO Nanowires." In Three-Dimensional Nanoarchitectures. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9822-4_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ledentsov, N. N., V. A. Shchukin, and J. A. Lott. "Ultrafast Nanophotonic Devices for Optical Interconnects." In Future Trends in Microelectronics. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Yatsui, Takashi, Gyu-Chul Yi, and Motoichi Ohtsu. "Nanophotonic Device Application Using Semiconductor Nanorod Heterostructures." In Semiconductor Nanostructures for Optoelectronic Devices. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pernice, Wolfram H. P. "Integrated Optomechanics: Opportunities for Tunable Nanophotonic Devices." In NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kantner, Markus, Theresa Höhne, Thomas Koprucki, et al. "Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices." In Semiconductor Nanophotonics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sharma, Rashi, Stephen M. Kuebler, Christopher N. Grabill, et al. "Fabrication of Functional Nanophotonic Devices via Multiphoton Polymerization." In ACS Symposium Series. American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1315.ch009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kolarczik, M., F. Böhm, U. Woggon, et al. "Coherent and Incoherent Dynamics in Quantum Dots and Nanophotonic Devices." In Semiconductor Nanophotonics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sangu, Suguru, Kiyoshi Kobayashi, Akira Shojiguchi, Tadashi Kawazoe, and Motoichi Ohtsu. "Theory and Principles of Operation of Nanophotonic Functional Devices." In Handbook of Nano-Optics and Nanophotonics. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31066-9_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Nanophotonic devices"

1

Nordin, Leland. "High Index Nanophotonic Structures and Optoelectronic Devices." In Novel Optical Materials and Applications. Optica Publishing Group, 2024. https://doi.org/10.1364/noma.2024.noth2c.2.

Pełny tekst źródła
Streszczenie:
High-index IV-VI semiconductors promise advancements in next-generation mid-infrared devices, with high refractive index, dislocation tolerance, low Auger recombination, and cold growth temperatures. We'll discuss our heteroepitaxial IV-VI/III-V devices and high-index epitaxial nanophotonic device architectures. Full-text article not available; see video presentation
Style APA, Harvard, Vancouver, ISO itp.
2

Nguyen, Trong Tam, Quang Huy Do, Johann Bouclé, et al. "Nanophotonic engineering of perovskite metasurface LEDs." In Organic and Hybrid Light Emitting Materials and Devices XXVIII, edited by Tae-Woo Lee, Franky So, and Ji-Seon Kim. SPIE, 2024. http://dx.doi.org/10.1117/12.3027593.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Aharonovich, Igor. "Quantum nanophotonics with hexagonal hBN." In Quantum Nanophotonic Materials, Devices, and Systems 2024, edited by Igor Aharonovich, Cesare Soci, and Matthew T. Sheldon. SPIE, 2024. http://dx.doi.org/10.1117/12.3029204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Atwater, Harry. "Plasmonic Nanophotonic Devices." In Optical Fiber Communication Conference. OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.omh1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cabrini, Stefano. "Making Nanophotonics Devices a Reality: Nanofabrication of Advanced Nanophotonic Structures." In CLEO: QELS_Fundamental Science. OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qtu3p.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Nezhad, Maziar P., Aleksandar Simic, Olesya Bondarenko, Boris A. Slutsky, Amit Mizrahi, and Yeshaiahu Fainman. "Nanophotonic devices and circuits." In SPIE OPTO, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2011. http://dx.doi.org/10.1117/12.877118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zablocki, Mathew J., Ahmed S. Sharkawy, Ozgenc Ebil, and Dennis W. Prather. "Nanomembrane enabled nanophotonic devices." In OPTO, edited by Joel A. Kubby and Graham T. Reed. SPIE, 2010. http://dx.doi.org/10.1117/12.842670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bimberg, D., G. Fiol, C. Meuer, M. Laemmlin, and M. Kuntz. "High-frequency nanophotonic devices." In Integrated Optoelectronic Devices 2007, edited by Carmen Mermelstein and David P. Bour. SPIE, 2007. http://dx.doi.org/10.1117/12.714215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kamp, M., H. Scherer, K. Janiak, et al. "Nanophotonic integrated lasers." In Integrated Optoelectronic Devices 2007, edited by Yakov Sidorin and Christoph A. Waechter. SPIE, 2007. http://dx.doi.org/10.1117/12.704965.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rarick, Hannah, Minho Choi, Abhi Saxena, et al. "Integration of Colloidal PbS Quantum Dots with Silicon Nanophotonics." In CLEO: Applications and Technology. Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jw2a.121.

Pełny tekst źródła
Streszczenie:
Silicon nanophotonics lacks light sources needed for on-chip applications like ultra-low-power lasing. In this work, we demonstrate integration and room temperature operation of PbS colloidal quantum dots coupled to silicon nanophotonic devices.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Nanophotonic devices"

1

Hochberg, Michael. Nanophotonic Devices in Silicon for Nonlinear Optics. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada562748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yablonovitch, Eli, and Ming Wu. Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission. Defense Technical Information Center, 2016. http://dx.doi.org/10.21236/ad1003774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yablonovitch, Eli, and Ming C. Wu. Nanophotonic Devices - Spontaneous Emission Faster than Stimulated Emission. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ad1013190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Huffaker, Diana L., and Kent D. Choquette. Coupled Quantum Dots and Photonic Crystals for Nanophotonic Devices. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada461030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Fainman, Y. Advanced Fabrication and Characterization of Quantum and Nanophotonic Devices and Systems. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada428546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Atwater, Harry A., Axel Scherer, Oskar J. Painter, Eli Yablonovitch, Xiang Zhang, and Federico Capasso. Novel Devices for Plasmonic and Nanophotonic Networks: Exploiting X-ray Wavelengths at Optical Frequencies. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada593919.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dal Negro, Luca. Deterministic Aperiodic Structures for on-chip Nanophotonics and Nanoplasmonics Device Applications. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada578550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Brinker, C. Jeffrey, Darren Robert Dunphy, Carlee E. Ashley, et al. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/883480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!