Artykuły w czasopismach na temat „Nanophotonic devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nanophotonic devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Volpyan, O. D., and A. I. Kuzmichev. "Nanoscale electron-photonic devices surface plasmonic polaritons." Electronics and Communications 16, no. 1 (2011): 5–11. http://dx.doi.org/10.20535/2312-1807.2011.16.1.273644.
Pełny tekst źródłaKarabchevsky, Alina, Aviad Katiyi, Angeleene S. Ang, and Adir Hazan. "On-chip nanophotonics and future challenges." Nanophotonics 9, no. 12 (2020): 3733–53. http://dx.doi.org/10.1515/nanoph-2020-0204.
Pełny tekst źródłaBogue, Robert. "Nanophotonic technologies driving innovations in molecular sensing." Sensor Review 38, no. 2 (2018): 171–75. http://dx.doi.org/10.1108/sr-07-2017-0124.
Pełny tekst źródłaAltug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.
Pełny tekst źródłaZhao, Dong, Zhelin Lin, Wenqi Zhu, et al. "Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces." Nanophotonics 10, no. 9 (2021): 2283–308. http://dx.doi.org/10.1515/nanoph-2021-0083.
Pełny tekst źródłaShukur, Hanan Mahmood, Sirwan Kareem Jalal, Maher Waleed Saab, et al. "Nanophotonic Devices for Radio Over Fiber (RoF) Technologies in Telecommunications Networks." Radioelectronics. Nanosystems. Information Technologies. 16, no. 5 (2024): 589–604. http://dx.doi.org/10.17725/j.rensit.2024.16.589.
Pełny tekst źródłaWang, Rui, Baicheng Zhang, Guan Wang, and Yachen Gao. "A Quick Method for Predicting Reflectance Spectra of Nanophotonic Devices via Artificial Neural Network." Nanomaterials 13, no. 21 (2023): 2839. http://dx.doi.org/10.3390/nano13212839.
Pełny tekst źródłaVan Thourhout, Dries, Thijs Spuesens, Shankar Kumar Selvaraja, et al. "Nanophotonic Devices for Optical Interconnect." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (2010): 1363–75. http://dx.doi.org/10.1109/jstqe.2010.2040711.
Pełny tekst źródłaMonticone, Francesco, and Andrea Alù. "Metamaterial, plasmonic and nanophotonic devices." Reports on Progress in Physics 80, no. 3 (2017): 036401. http://dx.doi.org/10.1088/1361-6633/aa518f.
Pełny tekst źródłaPARK, Hong-Kyu. "Nanophotonic Devices Using Semiconductor Nanowires." Physics and High Technology 20, no. 9 (2011): 27. http://dx.doi.org/10.3938/phit.20.038.
Pełny tekst źródłaChen, Jianjun, and Kexiu Rong. "Nanophotonic devices and circuits based on colloidal quantum dots." Materials Chemistry Frontiers 5, no. 12 (2021): 4502–37. http://dx.doi.org/10.1039/d0qm01118e.
Pełny tekst źródłaYao, Kan, Rohit Unni, and Yuebing Zheng. "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale." Nanophotonics 8, no. 3 (2019): 339–66. http://dx.doi.org/10.1515/nanoph-2018-0183.
Pełny tekst źródłaMeng, Qi, Xingqiao Chen, Wei Xu, Zhihong Zhu, Xiaodong Yuan, and Jianfa Zhang. "High Q Resonant Sb2S3-Lithium Niobate Metasurface for Active Nanophotonics." Nanomaterials 11, no. 9 (2021): 2373. http://dx.doi.org/10.3390/nano11092373.
Pełny tekst źródłaMa, Lifeng, Jing Li, Zhouhui Liu, et al. "Intelligent algorithms: new avenues for designing nanophotonic devices [Invited]." Chinese Optics Letters 19, no. 1 (2021): 011301. http://dx.doi.org/10.3788/col202119.011301.
Pełny tekst źródłaBorodin, B. R., F. A. Benimetskiy, V. Yu Davydov, et al. "Mechanical scanning probe lithography of nanophotonic devices based on multilayer TMDCs." Journal of Physics: Conference Series 2015, no. 1 (2021): 012020. http://dx.doi.org/10.1088/1742-6596/2015/1/012020.
Pełny tekst źródłaMomeni, Babak. "Silicon nanophotonic devices for integrated sensing." Journal of Nanophotonics 3, no. 1 (2009): 031001. http://dx.doi.org/10.1117/1.3122986.
Pełny tekst źródłaSANGU, S. "Nanophotonic Devices and Fundamental Functional Operations." IEICE Transactions on Electronics E88-C, no. 9 (2005): 1824–31. http://dx.doi.org/10.1093/ietele/e88-c.9.1824.
Pełny tekst źródłaSmolyaninov, Igor. "Nanophotonic devices based on plasmonic metamaterials." Journal of Modern Optics 55, no. 19-20 (2008): 3187–92. http://dx.doi.org/10.1080/09500340802169561.
Pełny tekst źródłaMaciá, Enrique. "Exploiting aperiodic designs in nanophotonic devices." Reports on Progress in Physics 75, no. 3 (2012): 036502. http://dx.doi.org/10.1088/0034-4885/75/3/036502.
Pełny tekst źródłaChen, Menglu, and Qun Hao. "Colloidal Quantum Dots for Nanophotonic Devices." Materials 17, no. 11 (2024): 2471. http://dx.doi.org/10.3390/ma17112471.
Pełny tekst źródłaKIM, Donghwee, and Hong-Gyu PARK. "Recent Progress in Nanophotonic Light Sources." Physics and High Technology 33, no. 3 (2024): 2–6. http://dx.doi.org/10.3938/phit.33.004.
Pełny tekst źródłaYuan, Hongyi, Zhouhui Liu, Maoliang Wei, Hongtao Lin, Xiaoyong Hu, and Cuicui Lu. "Topological Nanophotonic Wavelength Router Based on Topology Optimization." Micromachines 12, no. 12 (2021): 1506. http://dx.doi.org/10.3390/mi12121506.
Pełny tekst źródłaSo, Sunae, Trevon Badloe, Jaebum Noh, Jorge Bravo-Abad, and Junsuk Rho. "Deep learning enabled inverse design in nanophotonics." Nanophotonics 9, no. 5 (2020): 1041–57. http://dx.doi.org/10.1515/nanoph-2019-0474.
Pełny tekst źródłaColom, Rémi, Felix Binkowski, Fridtjof Betz, Martin Hammerschmidt, Lin Zschiedrich, and Sven Burger. "Quasi-normal mode expansion as a tool for the design of nanophotonic devices." EPJ Web of Conferences 238 (2020): 05008. http://dx.doi.org/10.1051/epjconf/202023805008.
Pełny tekst źródłaKuzmichev, Anatoly Ivanovich, and O. D. Vol'pyan. "Nanoscale electron-photonic devices based on localized plasmons." Electronics and Communications 16, no. 4 (2011): 26–30. http://dx.doi.org/10.20535/2312-1807.2011.16.4.242905.
Pełny tekst źródłaLi, Yang, Xuecai Zhang, Yutao Tang, et al. "Ge2Sb2Te5-based nanocavity metasurface for enhancement of third harmonic generation." New Journal of Physics 23, no. 11 (2021): 115009. http://dx.doi.org/10.1088/1367-2630/ac3317.
Pełny tekst źródłaFanchini, Giovanni, Noah B. Stocek, and Victor Wong. "(Invited) Near-Field Optics and Its Applications in Nanoscale Materials: A Review." ECS Transactions 113, no. 3 (2024): 15–28. http://dx.doi.org/10.1149/11303.0015ecst.
Pełny tekst źródłaKOMORI, Kazuhiro, Takeyoshi SUGAYA, Takeru AMANO, and Keishiro GOSHIMA. "Nanophotonic Devices Based on Semiconductor Quantum Nanostructures." IEICE Transactions on Electronics E99.C, no. 3 (2016): 346–57. http://dx.doi.org/10.1587/transele.e99.c.346.
Pełny tekst źródłaRamsay, Euan. "Solid immersion lens applications for nanophotonic devices." Journal of Nanophotonics 2, no. 1 (2008): 021854. http://dx.doi.org/10.1117/1.3068652.
Pełny tekst źródłaWang, Jiahui, Yu Shi, Tyler Hughes, Zhexin Zhao, and Shanhui Fan. "Adjoint-based optimization of active nanophotonic devices." Optics Express 26, no. 3 (2018): 3236. http://dx.doi.org/10.1364/oe.26.003236.
Pełny tekst źródłaZhao, Qiancheng, Ali K. Yetisen, Aydin Sabouri, Seok Hyun Yun, and Haider Butt. "Printable Nanophotonic Devices via Holographic Laser Ablation." ACS Nano 9, no. 9 (2015): 9062–69. http://dx.doi.org/10.1021/acsnano.5b03165.
Pełny tekst źródłaZhou, Zhiping. "Silicon nanophotonic devices based on resonance enhancement." Journal of Nanophotonics 4, no. 1 (2010): 041001. http://dx.doi.org/10.1117/1.3527260.
Pełny tekst źródłaTiecke, T. G., K. P. Nayak, J. D. Thompson, et al. "Efficient fiber-optical interface for nanophotonic devices." Optica 2, no. 2 (2015): 70. http://dx.doi.org/10.1364/optica.2.000070.
Pełny tekst źródłaHua, Yan, Yuming Wei, Bo Chen, et al. "Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings." Micromachines 12, no. 4 (2021): 422. http://dx.doi.org/10.3390/mi12040422.
Pełny tekst źródłaBelozerova, Nadezhda M., Denis A. Kislov, Ilia D. Medvedev, et al. "Raman scattering from silicon resonant Mie-voids." Applied photonics 11, no. 4 (2024): 5–19. https://doi.org/10.15593/2411-4375/2024.4.01.
Pełny tekst źródłaXu, Hongnan, Daoxin Dai, and Yaocheng Shi. "Silicon Integrated Nanophotonic Devices for On-Chip Multi-Mode Interconnects." Applied Sciences 10, no. 18 (2020): 6365. http://dx.doi.org/10.3390/app10186365.
Pełny tekst źródłaBradley, Jonathan. "(Invited) Rare-Earth-Doped Tellurium Oxide Light Emitting Nanophotonic Devices." ECS Meeting Abstracts MA2022-01, no. 20 (2022): 1092. http://dx.doi.org/10.1149/ma2022-01201092mtgabs.
Pełny tekst źródłaFryett, Taylor, Alan Zhan, and Arka Majumdar. "Cavity nonlinear optics with layered materials." Nanophotonics 7, no. 2 (2017): 355–70. http://dx.doi.org/10.1515/nanoph-2017-0069.
Pełny tekst źródłaFanchini, Giovanni, Noah B. Stocek, and Victor Wong. "(Invited) Near-Field Optics and Its Applications in Nanoscale Materials: A Review." ECS Meeting Abstracts MA2024-01, no. 22 (2024): 1335. http://dx.doi.org/10.1149/ma2024-01221335mtgabs.
Pełny tekst źródłaRiyadh, Shahad, Mohammed Salman Mohammad, and Noorulhuda Riyadh Naser. "Optical Properties of Germanium Nanoparticles Prepared by Laser Ablation." University of Thi-Qar Journal of Science 10, no. 2 (2023): 137–40. http://dx.doi.org/10.32792/utq/utjsci/v10i2.1119.
Pełny tekst źródłaJeon, Jaeho, Yajie Yang, Haeju Choi, Jin-Hong Park, Byoung Hun Lee, and Sungjoo Lee. "MXenes for future nanophotonic device applications." Nanophotonics 9, no. 7 (2020): 1831–53. http://dx.doi.org/10.1515/nanoph-2020-0060.
Pełny tekst źródłaCarvalho, William O. F., and J. R. Mejía-Salazar. "All-dielectric magnetophotonic gratings for maximum TMOKE enhancement." Physical Chemistry Chemical Physics 24, no. 9 (2022): 5431–36. http://dx.doi.org/10.1039/d1cp05232b.
Pełny tekst źródłaYesilkoy, Filiz. "Optical Interrogation Techniques for Nanophotonic Biochemical Sensors." Sensors 19, no. 19 (2019): 4287. http://dx.doi.org/10.3390/s19194287.
Pełny tekst źródłaHe, Jinghan, Hong Chen, Jin Hu, et al. "Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range." Nanophotonics 9, no. 12 (2020): 3781–804. http://dx.doi.org/10.1515/nanoph-2020-0231.
Pełny tekst źródłaSun, Shuo, Hyochul Kim, Zhouchen Luo, Glenn S. Solomon, and Edo Waks. "A single-photon switch and transistor enabled by a solid-state quantum memory." Science 361, no. 6397 (2018): 57–60. http://dx.doi.org/10.1126/science.aat3581.
Pełny tekst źródłaWang, Xuejing, and Haiyan Wang. "Self-assembled nitride–metal nanocomposites: recent progress and future prospects." Nanoscale 12, no. 40 (2020): 20564–79. http://dx.doi.org/10.1039/d0nr06316a.
Pełny tekst źródłaLiao Kun, 廖琨, 甘天奕 Gan Tianyi, 胡小永 Hu Xiaoyong, and 龚旗煌 Gong Qihuang. "On-Chip Nanophotonic Devices Based on Dielectric Metasurfaces." Acta Optica Sinica 41, no. 8 (2021): 0823001. http://dx.doi.org/10.3788/aos202141.0823001.
Pełny tekst źródłaZalevsky, Zeev. "Integrated micro- and nanophotonic dynamic devices: a review." Journal of Nanophotonics 1, no. 1 (2007): 012504. http://dx.doi.org/10.1117/1.2795715.
Pełny tekst źródłaAugenstein, Yannick, and Carsten Rockstuhl. "Inverse Design of Nanophotonic Devices with Structural Integrity." ACS Photonics 7, no. 8 (2020): 2190–96. http://dx.doi.org/10.1021/acsphotonics.0c00699.
Pełny tekst źródłaElesin, Y., B. S. Lazarov, J. S. Jensen, and O. Sigmund. "Time domain topology optimization of 3D nanophotonic devices." Photonics and Nanostructures - Fundamentals and Applications 12, no. 1 (2014): 23–33. http://dx.doi.org/10.1016/j.photonics.2013.07.008.
Pełny tekst źródła