Artykuły w czasopismach na temat „Natural bioink”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Natural bioink”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Willson, Kelsey, Anthony Atala i James J. Yoo. "Bioprinting Au Natural: The Biologics of Bioinks". Biomolecules 11, nr 11 (28.10.2021): 1593. http://dx.doi.org/10.3390/biom11111593.
Pełny tekst źródłaZhe, Man, Xinyu Wu, Peiyun Yu, Jiawei Xu, Ming Liu, Guang Yang, Zhou Xiang, Fei Xing i Ulrike Ritz. "Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering". Materials 16, nr 8 (18.04.2023): 3197. http://dx.doi.org/10.3390/ma16083197.
Pełny tekst źródłaGoklany, Sheba. "Conductive Nanomaterials used in Bioinks for 3D Bioprinting". Nano LIFE 11, nr 02 (czerwiec 2021): 2130005. http://dx.doi.org/10.1142/s1793984421300053.
Pełny tekst źródłaDelkash, Yasaman, Maxence Gouin, Tanguy Rimbeault, Fatemeh Mohabatpour, Petros Papagerakis, Sean Maw i Xiongbiao Chen. "Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications". Journal of Functional Biomaterials 12, nr 3 (11.08.2021): 45. http://dx.doi.org/10.3390/jfb12030045.
Pełny tekst źródłaZhang, Chun-Yang, Chao-Ping Fu, Xiong-Ya Li, Xiao-Chang Lu, Long-Ge Hu, Ranjith Kumar Kankala, Shi-Bin Wang i Ai-Zheng Chen. "Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering". Molecules 27, nr 11 (26.05.2022): 3442. http://dx.doi.org/10.3390/molecules27113442.
Pełny tekst źródłaChen, Yan, Yingge Zhou i Chi Wang. "Investigation of Collagen-Incorporated Sodium Alginate Bioprinting Hydrogel for Tissue Engineering". Journal of Composites Science 6, nr 8 (4.08.2022): 227. http://dx.doi.org/10.3390/jcs6080227.
Pełny tekst źródłaTolmacheva, Nelli, Amitava Bhattacharyya i Insup Noh. "Calcium Phosphate Biomaterials for 3D Bioprinting in Bone Tissue Engineering". Biomimetics 9, nr 2 (6.02.2024): 95. http://dx.doi.org/10.3390/biomimetics9020095.
Pełny tekst źródłaSanz-Fraile, Héctor, Carolina Herranz-Diez, Anna Ulldemolins, Bryan Falcones, Isaac Almendros, Núria Gavara, Raimon Sunyer, Ramon Farré i Jorge Otero. "Characterization of Bioinks Prepared via Gelifying Extracellular Matrix from Decellularized Porcine Myocardia". Gels 9, nr 9 (13.09.2023): 745. http://dx.doi.org/10.3390/gels9090745.
Pełny tekst źródłaLee, Juo, Sungmin Lee, Jae Woon Lim, Iksong Byun, Kyoung-Je Jang, Jin-Woo Kim, Jong Hoon Chung, Jungsil Kim i Hoon Seonwoo. "Development of Plum Seed-Derived Carboxymethylcellulose Bioink for 3D Bioprinting". Polymers 15, nr 23 (21.11.2023): 4473. http://dx.doi.org/10.3390/polym15234473.
Pełny tekst źródłaGao, Qiqi, Byoung-Soo Kim i Ge Gao. "Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks". Marine Drugs 19, nr 12 (15.12.2021): 708. http://dx.doi.org/10.3390/md19120708.
Pełny tekst źródłaTuan Mohd Marzuki, Tuan Mohamad Farhan, Mohd Syahir Anwar Hamzah i Nadirul Hasraf Mat Nayan. "A Review of Bioink Development for 3D Bioprinting: Application in Corneal Tissue Regeneration". Journal of Medical Device Technology 3, nr 2 (30.12.2024): 113–19. https://doi.org/10.11113/jmeditec.v3.58.
Pełny tekst źródłaGhosh, Prasanta Kumar. "Polymeric hydrogel nanoparticles in drug delivery and bioprinting technologies: a review". MGM Journal of Medical Sciences 11, nr 4 (październik 2024): 755–62. https://doi.org/10.4103/mgmj.mgmj_340_24.
Pełny tekst źródłaDatta, Sudipto. "Advantage of Alginate Bioinks in Biofabrication for Various Tissue Engineering Applications". International Journal of Polymer Science 2023 (7.06.2023): 1–20. http://dx.doi.org/10.1155/2023/6661452.
Pełny tekst źródłaHe, Yunfan, Soroosh Derakhshanfar, Wen Zhong, Bingyun Li, Feng Lu, Malcolm Xing i Xiaojian Li. "Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering". Journal of Nanomaterials 2020 (12.03.2020): 1–11. http://dx.doi.org/10.1155/2020/2057097.
Pełny tekst źródłaStepanovska, Jana, Monika Supova, Karel Hanzalek, Antonin Broz i Roman Matejka. "Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics". Biomedicines 9, nr 9 (1.09.2021): 1137. http://dx.doi.org/10.3390/biomedicines9091137.
Pełny tekst źródłaLee, Juo, Sangbae Park, Sungmin Lee, Hae Yong Kweon, You-Young Jo, Jungsil Kim, Jong Hoon Chung i Hoon Seonwoo. "Development of Silk Fibroin-Based Non-Crosslinking Thermosensitive Bioinks for 3D Bioprinting". Polymers 15, nr 17 (28.08.2023): 3567. http://dx.doi.org/10.3390/polym15173567.
Pełny tekst źródłaDouglas, Alisa, Yufei Chen, Margarita Elloso, Adam Levschuk i Marc G. Jeschke. "Bioprinting-By-Design of Hydrogel-Based Biomaterials for In Situ Skin Tissue Engineering". Gels 11, nr 2 (3.02.2025): 110. https://doi.org/10.3390/gels11020110.
Pełny tekst źródłaXu, Jie, Shuangshuang Zheng, Xueyan Hu, Liying Li, Wenfang Li, Roxanne Parungao, Yiwei Wang, Yi Nie, Tianqing Liu i Kedong Song. "Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting". Polymers 12, nr 6 (29.05.2020): 1237. http://dx.doi.org/10.3390/polym12061237.
Pełny tekst źródłaPatrocinio, David, Victor Galván-Chacón, J. Carlos Gómez-Blanco, Sonia P. Miguel, Jorge Loureiro, Maximiano P. Ribeiro, Paula Coutinho, J. Blas Pagador i Francisco M. Sanchez-Margallo. "Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications". Gels 9, nr 11 (10.11.2023): 890. http://dx.doi.org/10.3390/gels9110890.
Pełny tekst źródłaAbuhamad, Asmaa Y., Syafira Masri, Nur Izzah Md Fadilah, Mohammed Numan Alamassi, Manira Maarof i Mh Busra Fauzi. "Application of 3D-Printed Bioinks in Chronic Wound Healing: A Scoping Review". Polymers 16, nr 17 (29.08.2024): 2456. http://dx.doi.org/10.3390/polym16172456.
Pełny tekst źródłaAghajani, Mohammad, Hamid Reza Garshasbi, Seyed Morteza Naghib i M. R. Mozafari. "3D Printing of Hydrogel Polysaccharides for Biomedical Applications: A Review". Biomedicines 13, nr 3 (17.03.2025): 731. https://doi.org/10.3390/biomedicines13030731.
Pełny tekst źródłaGill, Amoljit Singh, Parneet Kaur Deol i Indu Pal Kaur. "An Update on the Use of Alginate in Additive Biofabrication Techniques". Current Pharmaceutical Design 25, nr 11 (6.08.2019): 1249–64. http://dx.doi.org/10.2174/1381612825666190423155835.
Pełny tekst źródłaNashchekina, Yuliya, Anastasia Militsina, Vladimir Elokhovskiy, Elena Ivan’kova, Alexey Nashchekin, Almaz Kamalov i Vladimir Yudin. "Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing". Polymers 16, nr 8 (9.04.2024): 1027. http://dx.doi.org/10.3390/polym16081027.
Pełny tekst źródłaKostenko, Anastassia, Che J. Connon i Stephen Swioklo. "Storable Cell-Laden Alginate Based Bioinks for 3D Biofabrication". Bioengineering 10, nr 1 (23.12.2022): 23. http://dx.doi.org/10.3390/bioengineering10010023.
Pełny tekst źródłaKreimendahl, Franziska, Caroline Kniebs, Ana Margarida Tavares Sobreiro, Thomas Schmitz-Rode, Stefan Jockenhoevel i Anja Lena Thiebes. "FRESH bioprinting technology for tissue engineering – the influence of printing process and bioink composition on cell behavior and vascularization". Journal of Applied Biomaterials & Functional Materials 19 (styczeń 2021): 228080002110288. http://dx.doi.org/10.1177/22808000211028808.
Pełny tekst źródłaTeixeira, Maria C., Nicole S. Lameirinhas, João P. F. Carvalho, Armando J. D. Silvestre, Carla Vilela i Carmen S. R. Freire. "A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications". International Journal of Molecular Sciences 23, nr 12 (12.06.2022): 6564. http://dx.doi.org/10.3390/ijms23126564.
Pełny tekst źródłaMadhusudhan, Alle, Tejaskumar A. Suhagia, Chhavi Sharma, Saravana Kumar Jaganathan i Shiv Dutt Purohit. "Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review". Polymers 16, nr 23 (27.11.2024): 3318. http://dx.doi.org/10.3390/polym16233318.
Pełny tekst źródłaPisani, Silvia, Rossella Dorati, Franca Scocozza, Camilla Mariotti, Enrica Chiesa, Giovanna Bruni, Ida Genta, Ferdinando Auricchio, Michele Conti i Bice Conti. "Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink". Journal of Biomedical Materials Research Part B: Applied Biomaterials 108, nr 7 (11.03.2020): 2718–32. http://dx.doi.org/10.1002/jbm.b.34602.
Pełny tekst źródłaCohen, Roni, Ester-Sapir Baruch, Itai Cabilly, Assaf Shapira i Tal Dvir. "Modified ECM-Based Bioink for 3D Printing of Multi-Scale Vascular Networks". Gels 9, nr 10 (1.10.2023): 792. http://dx.doi.org/10.3390/gels9100792.
Pełny tekst źródłaJung, Chi Sung, Byeong Kook Kim, Junhee Lee, Byoung-Hyun Min i Sang-Hyug Park. "Development of Printable Natural Cartilage Matrix Bioink for 3D Printing of Irregular Tissue Shape". Tissue Engineering and Regenerative Medicine 15, nr 2 (28.12.2017): 155–62. http://dx.doi.org/10.1007/s13770-017-0104-8.
Pełny tekst źródłaFilippova, Svetlana Yu, Oleg I. Kit, Anastasia O. Sitkovskaya, Irina V. Mezhevova, Nadezhda V. Gnennaya, Tatiana V. Shamova, Sofia V. Timofeeva i in. "Photo-curing of GelMA A bioink is more preferable than chemical curing for creating 3D models of breast cancer tumor growth." Journal of Clinical Oncology 40, nr 16_suppl (1.06.2022): e15067-e15067. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15067.
Pełny tekst źródłaWu, Kevin Y., Rahma Osman, Natalie Kearn i Ananda Kalevar. "Three-Dimensional Bioprinting for Retinal Tissue Engineering". Biomimetics 9, nr 12 (1.12.2024): 733. https://doi.org/10.3390/biomimetics9120733.
Pełny tekst źródłaCastro Thomazi, Vinicius, Natasha Maurmann i Patricia Pranke. "Bioprinting for Skin: Current Approaches, Technological Advancements and the Role of Artificial Intelligence". International Journal of Advances in Medical Biotechnology - IJAMB 6, nr 2 (1.12.2024): 114–30. https://doi.org/10.52466/ijamb.v6i2.135.
Pełny tekst źródłaVieira de Souza, Thaís, Sonia Maria Malmonge i Arnaldo R. Santos. "Development of a chitosan and hyaluronic acid hydrogel with potential for bioprinting utilization: A preliminary study". Journal of Biomaterials Applications 36, nr 2 (9.06.2021): 358–71. http://dx.doi.org/10.1177/08853282211024164.
Pełny tekst źródłaMohd, Nurulhuda, Masfueh Razali, Mariyam Jameelah Ghazali i Noor Hayaty Abu Kasim. "Current Advances of Three-Dimensional Bioprinting Application in Dentistry: A Scoping Review". Materials 15, nr 18 (15.09.2022): 6398. http://dx.doi.org/10.3390/ma15186398.
Pełny tekst źródłaKhalida Fakhruddin, Belal Yahya Hussein Al-Tam, Abdallah Nasser Sayed, Zarin Mesbah, Angelique Maryann Pereira Anthony Jerald Pereira, Al Ameerah Elza Toto Syaputri i Mohamad Ikhwan Jamaludin. "3D Bioprinting: Introduction and Recent Advancement". Journal of Medical Device Technology 1, nr 1 (8.10.2022): 25–29. http://dx.doi.org/10.11113/jmeditec.v1n1.13.
Pełny tekst źródłaPahlevanzadeh, Farnoosh, Hamidreza Mokhtari, Hamid Reza Bakhsheshi-Rad, Rahmatollah Emadi, Mahshid Kharaziha, Ali Valiani, S. Ali Poursamar, Ahmad Fauzi Ismail, Seeram RamaKrishna i Filippo Berto. "Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications". Materials 13, nr 18 (8.09.2020): 3980. http://dx.doi.org/10.3390/ma13183980.
Pełny tekst źródłaSzychlinska, Marta Anna, Fabio Bucchieri, Alberto Fucarino, Alfredo Ronca i Ugo D’Amora. "Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources". Journal of Functional Biomaterials 13, nr 3 (12.08.2022): 118. http://dx.doi.org/10.3390/jfb13030118.
Pełny tekst źródłaTuladhar, Slesha, Scott Clark i Ahasan Habib. "Tuning Shear Thinning Factors of 3D Bio-Printable Hydrogels Using Short Fiber". Materials 16, nr 2 (6.01.2023): 572. http://dx.doi.org/10.3390/ma16020572.
Pełny tekst źródłaKanokova, Denisa, Roman Matejka, Margit Zaloudkova, Jan Zigmond, Monika Supova i Jana Matejkova. "Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling". Gels 10, nr 5 (5.05.2024): 316. http://dx.doi.org/10.3390/gels10050316.
Pełny tekst źródłaIbrahim, Eman Assem, Moamen Mohsen Sarhan, Salah Ezzelarab i Mona K. Marei. "A scoping review on the potential of three-dimensional bioprinting in auricular cartilage regeneration". SRM Journal of Research in Dental Sciences 15, nr 3 (lipiec 2024): 111–20. http://dx.doi.org/10.4103/srmjrds.srmjrds_43_24.
Pełny tekst źródłaNaranda, Jakob, Matej Bračič, Matjaž Vogrin i Uroš Maver. "Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering". Materials 14, nr 14 (16.07.2021): 3977. http://dx.doi.org/10.3390/ma14143977.
Pełny tekst źródłaDoyle, S., D. Winrow, T. Aregbesola, J. Martin, E. Pernevik, V. Kuzmenko, L. Howard, K. Thompson, M. Johnson i C. Coleman. "FABRICATION OF A HIGH-THROUGHPUT 3D-PRINTED OSTEOGENIC CORAL-CONTAINING SCAFFOLD". Orthopaedic Proceedings 106-B, SUPP_1 (2.01.2024): 129. http://dx.doi.org/10.1302/1358-992x.2024.1.129.
Pełny tekst źródłaMajhi, P. S., i K. Pramanik. "Development of three‐dimensional printed microfibrous structures using sodium alginate/silk fibroin bioink for tissue engineering application". Materialwissenschaft und Werkstofftechnik 54, nr 12 (grudzień 2023): 1542–53. http://dx.doi.org/10.1002/mawe.202200215.
Pełny tekst źródłaMatejkova, Jana, Denisa Kanokova, Monika Supova i Roman Matejka. "A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation". Gels 10, nr 1 (15.01.2024): 66. http://dx.doi.org/10.3390/gels10010066.
Pełny tekst źródłaGalocha-León, Cristina, Cristina Antich, Beatriz Clares-Naveros, Ana Voltes-Martínez, Juan Antonio Marchal i Patricia Gálvez-Martín. "Design and Characterization of Biomimetic Hybrid Construct Based on Hyaluronic Acid and Alginate Bioink for Regeneration of Articular Cartilage". Pharmaceutics 16, nr 11 (7.11.2024): 1422. http://dx.doi.org/10.3390/pharmaceutics16111422.
Pełny tekst źródłaNguyen, Thai Phuong Thao, Phuong Hien Le i Thi-Hiep Nguyen. "A review on injectable hydrogels from xanthan gum for biomedical applications". Ministry of Science and Technology, Vietnam 64, nr 1 (15.03.2022): 53–62. http://dx.doi.org/10.31276/vjste.64(1).53-62.
Pełny tekst źródłaZhang, Yi, Dezhi Zhou, Jianwei Chen, Xiuxiu Zhang, Xinda Li, Wenxiang Zhao i Tao Xu. "Biomaterials Based on Marine Resources for 3D Bioprinting Applications". Marine Drugs 17, nr 10 (28.09.2019): 555. http://dx.doi.org/10.3390/md17100555.
Pełny tekst źródłaLoureiro, Jorge, Sónia P. Miguel, Victor Galván-Chacón, David Patrocinio, José Blas Pagador, Francisco M. Sánchez-Margallo, Maximiano P. Ribeiro i Paula Coutinho. "Three-Dimensionally Printed Hydrogel Cardiac Patch for Infarct Regeneration Based on Natural Polysaccharides". Polymers 15, nr 13 (26.06.2023): 2824. http://dx.doi.org/10.3390/polym15132824.
Pełny tekst źródłaMasri, Syafira, Mazlan Zawani, Izzat Zulkiflee, Atiqah Salleh, Nur Izzah Md Fadilah, Manira Maarof, Adzim Poh Yuen Wen i in. "Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review". International Journal of Molecular Sciences 23, nr 1 (1.01.2022): 476. http://dx.doi.org/10.3390/ijms23010476.
Pełny tekst źródła