Gotowa bibliografia na temat „Navigation models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Navigation models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Navigation models"
Greenwood, Narcessa Gail-Rosales, Cynthia B. Taniguchi, Amy Sheldrick i Leslie Hurley. "Navigation models in diverse outpatient settings: Shared themes, challenges, and opportunities." Journal of Clinical Oncology 36, nr 30_suppl (20.10.2018): 134. http://dx.doi.org/10.1200/jco.2018.36.30_suppl.134.
Pełny tekst źródłaCao, Caroline G. L., i Paul Milgram. "Direction and Location Are Not Sufficient for Navigating in Nonrigid Environments: An Empirical Study in Augmented Reality". Presence: Teleoperators and Virtual Environments 16, nr 6 (1.12.2007): 584–602. http://dx.doi.org/10.1162/pres.16.6.584.
Pełny tekst źródłaBodas Gallego, Alberto. "Modern Solar Navigation Techniques". Groundings Undergraduate 14 (1.04.2023): 29–50. http://dx.doi.org/10.36399/groundingsug.14.143.
Pełny tekst źródłaNosov, P. S., I. V. Palamarchuk, S. M. Zinchenko, Ya A. Nahrybelnyi, I. S. Popovych i ,. H. V. Nosova. "Development of means for experimental identification of navigator attention in ergatic systems of maritime transport". Bulletin of the Karaganda University. "Physics" Series 97, nr 1 (30.03.2020): 58–69. http://dx.doi.org/10.31489/2020ph1/58-69.
Pełny tekst źródłaLevchenko, O. "A METHOD FOR FORMALIZING THE DECISION-MAKING PROCESS FOR PREVENTING DANGEROUS SITUATIONS IN THE E-NAVIGATION SYSTEM". Shipping & Navigation 34, nr 1 (5.05.2023): 115–26. http://dx.doi.org/10.31653/2306-5761.34.2023.115-126.
Pełny tekst źródłaZhou, Gengze, Yicong Hong i Qi Wu. "NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 7 (24.03.2024): 7641–49. http://dx.doi.org/10.1609/aaai.v38i7.28597.
Pełny tekst źródłaBerdahl, Andrew M., Albert B. Kao, Andrea Flack, Peter A. H. Westley, Edward A. Codling, Iain D. Couzin, Anthony I. Dell i Dora Biro. "Collective animal navigation and migratory culture: from theoretical models to empirical evidence". Philosophical Transactions of the Royal Society B: Biological Sciences 373, nr 1746 (26.03.2018): 20170009. http://dx.doi.org/10.1098/rstb.2017.0009.
Pełny tekst źródłaPalamarchuk, I. V. "MODELING THE DIVERGENCE OF SHIPS IN THE DECISION SUPPORT SYSTEM OF THE NAVIGATOR". Scientific Bulletin Kherson State Maritime Academy 1, nr 22 (2020): 45–53. http://dx.doi.org/10.33815/2313-4763.2020.1.22.045-053.
Pełny tekst źródłaFreeman, Robin, i Dora Biro. "Modelling Group Navigation: Dominance and Democracy in Homing Pigeons". Journal of Navigation 62, nr 1 (22.12.2008): 33–40. http://dx.doi.org/10.1017/s0373463308005080.
Pełny tekst źródłaJindal, Honey, i Neetu Sardana. "An Empirical Analysis of Web Navigation Prediction Techniques". Journal of Cases on Information Technology 19, nr 1 (styczeń 2017): 1–14. http://dx.doi.org/10.4018/jcit.2017010101.
Pełny tekst źródłaRozprawy doktorskie na temat "Navigation models"
Masek, Theodore. "Acoustic image models for navigation with forward-looking sonars". Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FMasek.pdf.
Pełny tekst źródłaThesis Advisor(s): Kolsch, Mathias. "December 2008." Description based on title screen as viewed on January 30, 2009. Includes bibliographical references (p. 51-52). Also available in print.
Sutton, R. "Fuzzy set models of the helmsman steering a ship in course-keeping and course-changing modes". Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377871.
Pełny tekst źródłaLlofriu, Alonso Martin I. "Multi-Scale Spatial Cognition Models and Bio-Inspired Robot Navigation". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6888.
Pełny tekst źródłaJulier, Simon J. "Process models for the navigation of high speed land vehicles". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362011.
Pełny tekst źródłaKerfs, Jeremy N. "Models for Pedestrian Trajectory Prediction and Navigation in Dynamic Environments". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1716.
Pełny tekst źródłaKretzschmar, Henrik [Verfasser], i Wolfram [Akademischer Betreuer] Burgard. "Learning probabilistic models for mobile robot navigation = Techniken zum maschinellen Lernen probabilistischer Modelle für die Navigation mit mobilen Robotern". Freiburg : Universität, 2014. http://d-nb.info/1123481040/34.
Pełny tekst źródłaReid, Zachary A. "Leveraging 3D Models for SAR-based Navigation in GPS-denied Environments". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1540419210051179.
Pełny tekst źródłaGoldiez, Brian. "TECHNIQUES FOR ASSESSING AND IMPROVING PERFORMANCE IN NAVIGATION AND W". Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3603.
Pełny tekst źródłaPh.D.
Other
Arts and Sciences
Modeling and Simulation
Yu, Chunlei. "Contribution to evidential models for perception grids : application to intelligent vehicle navigation". Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2293.
Pełny tekst źródłaFor intelligent vehicle applications, a perception system is a key component to characterize in real-time a model of the driving environment at the surrounding of the vehicle. When modeling the environment, obstacle information is the first feature that has to be managed since collisions can be fatal for the other road users or for the passengers on-board the considered vehicle. Characterization of occupation space is therefore crucial but not sufficient for autonomous vehicles since the control system needs to find the navigable space for safe trajectory planning. Indeed, in order to run on public roads with other users, the vehicle needs to follow the traffic rules which are, for instance, described by markings painted on the carriageway. In this work, we focus on an ego-centered grid-based approach to model the environment. The objective is to include in a unified world model obstacle information with semantic road rules. To model obstacle information, occupancy is handled by interpreting the information of different sensors into the values of the cells. To model the semantic of the navigable space, we propose to introduce the notion of lane grids which consist in integrating semantic lane information into the cells of the grid. The combination of these two levels of information gives a refined environment model. When interpreting sensor data into obstacle information, uncertainty inevitably arises from ignorance and errors. Ignorance is due to the perception of new areas and errors come from noisy measurements and imprecise pose estimation. In this research, the belief function theory is adopted to deal with uncertainties and we propose evidential models for different kind of sensors like lidars and cameras. Lane grids contain semantic lane information coming from lane marking information for instance. To this end, we propose to use a prior map which contains detailed road information including road orientation and lane markings. This information is extracted from the map by using a pose estimate provided by a localization system. In the proposed model, we integrate lane information into the grids by taking into account the uncertainty of the estimated pose. The proposed algorithms have been implemented and tested on real data acquired on public roads. We have developed algorithms in Matlab and C++ using the PACPUS software framework developed at the laboratory
Lui, Sin Ting Angela. "Enhancing stochastic mobility prediction models for robust planetary navigation on unstructured terrain". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12904.
Pełny tekst źródłaKsiążki na temat "Navigation models"
Park, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. [Vicksburg, Miss: US Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Znajdź pełny tekst źródłaPark, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. Vicksburg, MS (3909 Halls Ferry Road, Vicksburg, 39180): U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Znajdź pełny tekst źródłaLibý, Josef. Model investigations of the improvement of navigations conditions on the lower Elbe (Labe) between Střekov anf Prostřední Žleb. Prague: Výzkumný ústav vodohospodářský T.G. Masaryka, 2002.
Znajdź pełny tekst źródłaBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Znajdź pełny tekst źródłaBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Znajdź pełny tekst źródłaMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Znajdź pełny tekst źródłaMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Znajdź pełny tekst źródłaMyrick, Carolyn M. Navigation conditions in vicinity of Walter Bouldin Lock and Dam, Coosa River Project: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Znajdź pełny tekst źródłaD, Mulherin Nathan, U.S. Cold Regions Research and Engineering Laboratory. i United States. Army. Corps of Engineers. Alaska District., red. Development and results of a Northern Sea Route transit model. [Hanover, N.H.]: Dept. of the Army, Cold Regions Research and Engineering Laboratory, 1996.
Znajdź pełny tekst źródłaShudde, Rex H. Some tactical algorithms for spherical geometry. Monterey, Calif: Naval Postgraduate School, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Navigation models"
Miller, James. "Force Models". W Planetary Spacecraft Navigation, 51–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78916-3_2.
Pełny tekst źródłaWells, Kristen J., i Sumayah Nuhaily. "Models of Patient Navigation". W Patient Navigation, 27–40. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6979-1_2.
Pełny tekst źródłaAyoun, André, Jean-Pierre Gambotto i Jean-Luc Jezouin. "Geometric Models for Navigation". W Mapping and Spatial Modelling for Navigation, 245–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84215-3_13.
Pełny tekst źródłaChroust, Gerhard. "Navigation in process models". W Software Process Technology, 119–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57739-4_16.
Pełny tekst źródłaYan, Jinjin, i Sisi Zlatanova. "Space-based Navigation Models". W Seamless 3D Navigation in Indoor and Outdoor Spaces, 45–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003281146-3.
Pełny tekst źródłaEpstein, Susan L., Anoop Aroor, Matthew Evanusa, Elizabeth I. Sklar i Simon Parsons. "Learning Spatial Models for Navigation". W Spatial Information Theory, 403–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23374-1_19.
Pełny tekst źródłaAckermann, Friedrich. "Digital Terrain Models of Forest Areas by Airborne Laser Profiling". W High Precision Navigation, 239–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_17.
Pełny tekst źródłaMansour, Moussa, i David Donaldson. "Invasive Electroanatomical Mapping and Navigation". W Cardiac Electrophysiology Methods and Models, 349–56. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6658-2_17.
Pełny tekst źródłaRamírez-Hernández, Luis Roberto, Julio Cesar Rodríguez-Quiñonez, Moisés J. Castro-Toscano, Daniel Hernández-Balbuena, Wendy Flores-Fuentes, Moisés Rivas-López, Lars Lindner, Danilo Cáceres-Hernández, Marina Kolendovska i Fabián N. Murrieta-Rico. "Stereoscopic Vision Systems in Machine Vision, Models, and Applications". W Machine Vision and Navigation, 241–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22587-2_8.
Pełny tekst źródłaYan, Lei, An Li, Wanfeng Ji i Yang Li. "Topographic Elevation Navigation and Positioning Fundamentals and Theoretical Models". W Navigation: Science and Technology, 193–230. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5524-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Navigation models"
Balcı, Emirhan, Mehmet Sarıgül i Barış Ata. "Prompting Large Language Models for Aerial Navigation". W 2024 9th International Conference on Computer Science and Engineering (UBMK), 304–9. IEEE, 2024. https://doi.org/10.1109/ubmk63289.2024.10773467.
Pełny tekst źródłaCai, Wenzhe, Siyuan Huang, Guangran Cheng, Yuxing Long, Peng Gao, Changyin Sun i Hao Dong. "Bridging Zero-shot Object Navigation and Foundation Models through Pixel-Guided Navigation Skill". W 2024 IEEE International Conference on Robotics and Automation (ICRA), 5228–34. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610499.
Pełny tekst źródłaBurlet, J., T. Fraichard i O. Aycard. "Robust navigation using Markov models". W 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005. http://dx.doi.org/10.1109/iros.2005.1545091.
Pełny tekst źródłaAnderson, Mark. "Standard optimal pilot models". W Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3627.
Pełny tekst źródłaAnthes, Christoph, Paul Heinzlreiter, Gerhard Kurka i Jens Volkert. "Navigation models for a flexible, multi-mode VR navigation framework". W the 2004 ACM SIGGRAPH international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1044588.1044693.
Pełny tekst źródłaZhang, Yubo, Hao Tan i Mohit Bansal. "Diagnosing the Environment Bias in Vision-and-Language Navigation". W Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/124.
Pełny tekst źródłaDoman, David, i Mark Anderson. "Fixed order optimal pilot models". W Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3871.
Pełny tekst źródłaBaras, Karolina, A. Moreira i F. Meneses. "Navigation based on symbolic space models". W 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010. http://dx.doi.org/10.1109/ipin.2010.5646810.
Pełny tekst źródłaCanciani, Aaron, i John Raquet. "Self Building World Models for Navigation". W 2017 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2017. http://dx.doi.org/10.33012/2017.14966.
Pełny tekst źródłaKruse, Thibault, Alexandra Kirsch, Harmish Khambhaita i Rachid Alami. "Evaluating directional cost models in navigation". W HRI'14: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2559636.2559662.
Pełny tekst źródłaRaporty organizacyjne na temat "Navigation models"
Gilbert, Jennifer, Stephanie Veazie, Kevin Joines, Kara Winchell, Rose Relevo, Robin Paynter i Jeanne-Marie Guise. Patient Navigation Models for Lung Cancer. Agency for Healthcare Research and Quality (AHRQ), grudzień 2018. http://dx.doi.org/10.23970/ahrqepcrapidlung.
Pełny tekst źródłaRyerson, R. A. Global navigation satellite system augmentation models environmental scan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/297405.
Pełny tekst źródłaCronin, Thomas W. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance. Fort Belvoir, VA: Defense Technical Information Center, maj 2013. http://dx.doi.org/10.21236/ada594988.
Pełny tekst źródłaMarshall, Justin, Thomas Cronin i Nick Roberts. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance, Part 1. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2011. http://dx.doi.org/10.21236/ada547656.
Pełny tekst źródłaMoore, Gabriel, Anton du Toit, Susie Thompson, Jillian Hutchinson, Adira Wiryoatmodjo, Prithivi Prakash Sivaprakash i Rebecca Gordon. Effectiveness of school located nurse models. The Sax Institute, maj 2021. http://dx.doi.org/10.57022/gmwr5438.
Pełny tekst źródłaAltman, Safra, Krystyna Powell i Marin Kress. Marine bioinvasion risk : review of current ecological models. Engineer Research and Development Center (U.S.), październik 2023. http://dx.doi.org/10.21079/11681/47820.
Pełny tekst źródłaPatev, Robert C., David L. Buccini, James W. Bartek i Stuart Foltz. Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2013. http://dx.doi.org/10.21236/ada582967.
Pełny tekst źródłaLi, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed i Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), kwiecień 2024. http://dx.doi.org/10.21079/11681/48392.
Pełny tekst źródłaLemasson, Bertrand, Emily Russ i Chanda Littles. A review of habitat modeling methods that can advance our ability to estimate the ecological cobenefits of dredge material placement. Engineer Research and Development Center (U.S.), wrzesień 2024. http://dx.doi.org/10.21079/11681/49425.
Pełny tekst źródłaShukla, Indu, Rajeev Agrawal, Kelly Ervin i Jonathan Boone. AI on digital twin of facility captured by reality scans. Engineer Research and Development Center (U.S.), listopad 2023. http://dx.doi.org/10.21079/11681/47850.
Pełny tekst źródła