Gotowa bibliografia na temat „Neighborhood total domination”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Neighborhood total domination”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Neighborhood total domination"

1

Hassan, Javier, and Sergio R. Canoy, Jr. "Grundy Total Hop Dominating Sequences in Graphs." European Journal of Pure and Applied Mathematics 16, no. 4 (2023): 2597–612. http://dx.doi.org/10.29020/nybg.ejpam.v16i4.4877.

Pełny tekst źródła
Streszczenie:
Let G = (V (G), E(G)) be an undirected graph with γ(C) ̸= 1 for each component C of G. Let S = (v1, v2, · · · , vk) be a sequence of distint vertices of a graph G, and let Sˆ ={v1, v2, . . . , vk}. Then S is a legal open hop neighborhood sequence if N2G(vi) \Si−1j=1 N2G(vj ) ̸= ∅for every i ∈ {2, . . . , k}. If, in addition, Sˆ is a total hop dominating set of G, then S is a Grundy total hop dominating sequence. The maximum length of a Grundy total hop dominating sequence in a graph G, denoted by γth gr(G), is the Grundy total hop domination number of G. In this paper, we show that the Grundy
Style APA, Harvard, Vancouver, ISO itp.
2

Sivagnanam, C. "Neighborhood Total Domination and Colouring in Graphs." International Journal of Mathematics and Soft Computing 5, no. 1 (2015): 143. http://dx.doi.org/10.26708/ijmsc.2015.1.5.16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wang, Kan, Changhong Lu, and Bing Wang. "Bounds on Neighborhood Total Domination Numberin Graphs." Bulletin of the Iranian Mathematical Society 45, no. 4 (2019): 1135–43. http://dx.doi.org/10.1007/s41980-018-0189-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Henning, Michael A., and Nader Jafari Rad. "Bounds on neighborhood total domination in graphs." Discrete Applied Mathematics 161, no. 16-17 (2013): 2460–66. http://dx.doi.org/10.1016/j.dam.2013.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Henning, Michael A., and Kirsti Wash. "Trees with large neighborhood total domination number." Discrete Applied Mathematics 187 (May 2015): 96–102. http://dx.doi.org/10.1016/j.dam.2015.01.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

RAD, NADER JAFARI. "A note on neighborhood total domination in graphs." Proceedings - Mathematical Sciences 125, no. 3 (2015): 271–76. http://dx.doi.org/10.1007/s12044-015-0241-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lee, Chuan-Min. "Exploring Dominating Functions and Their Complexity in Subclasses of Weighted Chordal Graphs and Bipartite Graphs." Mathematics 13, no. 3 (2025): 403. https://doi.org/10.3390/math13030403.

Pełny tekst źródła
Streszczenie:
Domination problems are fundamental problems in graph theory with diverse applications in optimization, network design, and computational complexity. This paper investigates {k}-domination, k-tuple domination, and their total domination variants in weighted strongly chordal graphs and chordal bipartite graphs. Specifically, the {k}-domination problem in weighted strongly chordal graphs and the total {k}-domination problem in weighted chordal bipartite graphs are shown to be solvable in O(n+m) time. For weighted proper interval graphs and convex bipartite graphs, we solve the k-tuple domination
Style APA, Harvard, Vancouver, ISO itp.
8

Sheikholeslami, Seyed Mahmoud, and Lutz Volkmann. "Outer independent total double Italian domination number." Computer Science Journal of Moldova 32, no. 1(94) (2024): 19–37. http://dx.doi.org/10.56415/csjm.v32.02.

Pełny tekst źródła
Streszczenie:
If $G$ is a graph with vertex set $V(G)$, then let $N[u]$ be the closed neighborhood of the vertex $u\in V(G)$. A total double Italian dominating function (TDIDF) on a graph $G$ is a function $f:V(G)\rightarrow\{0,1,2,3\}$ satisfying (i) $f(N[u])\ge 3$ for every vertex $u\in V(G)$ with $f(u)\in\{0,1\}$ and (ii) the subgraph induced by the vertices with a non-zero label has no isolated vertices. A TDIDF is an outer-independent total double Italian dominating function (OITDIDF) on $G$ if the set of vertices labeled $0$ induces an edgeless subgraph. The weight of an OITDIDF is the sum of its func
Style APA, Harvard, Vancouver, ISO itp.
9

Jha, Anupriya, D. Pradhan, and S. Banerjee. "Algorithm and hardness results on neighborhood total domination in graphs." Theoretical Computer Science 840 (November 2020): 16–32. http://dx.doi.org/10.1016/j.tcs.2020.05.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lu, Changhong, Bing Wang та Kan Wang. "Algorithm complexity of neighborhood total domination and $$(\rho ,\gamma _{nt})$$ ( ρ , γ n t ) -graphs". Journal of Combinatorial Optimization 35, № 2 (2017): 424–35. http://dx.doi.org/10.1007/s10878-017-0181-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Neighborhood total domination"

1

Casado, Alejandra, Jesús Sánchez-Oro, Anna Martínez-Gavara, and Abraham Duarte. "Improving Biased Random Key Genetic Algorithm with Variable Neighborhood Search for the Weighted Total Domination Problem." In Metaheuristics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62912-9_36.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Motair, Hafed. "An Insertion Procedure to Solve Hybrid Multiobjective Permutation Flowshop Scheduling Problems." In Mastering Time - Innovative Solutions to Complex Scheduling Problems [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1006829.

Pełny tekst źródła
Streszczenie:
This paper presents an insertion procedure (IP) that can be used to improve the performance of multiobjective scheduling problems (MOSPs) algorithms. The proposed procedure uses variable neighborhood search (VNS) combined with an insertion method, which can be adapted to any MOSP, whether heuristic or metaheuristic. The aim is to solve 2-machine permutation flowshop scheduling problem (PFSP) and minimize two objective functions simultaneously: Maximum completion time (makespan) and total completion times (∑jCj) (TCT) in order to find the efficient (non dominated) solutions. The proposed IP is
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Neighborhood total domination"

1

Anjaline, W., and A. Stanis Arul Mary. "Minimum neighborhood total domination of some graphs." In INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRONICS AND COMMUNICATION ENGINEERING - 2023. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kahat, Sahib S. H., and Manal N. Al-Harere. "Total equality Co-neighborhood domination in a graph." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!