Gotowa bibliografia na temat „Networks anomalies detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Networks anomalies detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Networks anomalies detection"
Liao, Xiao Ju, Yi Wang, and Hai Lu. "Rule Anomalies Detection in Firewalls." Key Engineering Materials 474-476 (April 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Pełny tekst źródłaRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Pełny tekst źródłaRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Pełny tekst źródłaJuli, Rejito, Stiawan Deris, Alshaflut Ahmed, and Budiarto Rahmat. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. https://doi.org/10.11591/csit.v5i2.pp122-129.
Pełny tekst źródłaNavale, Manisha Pandurang, and Brijendra P. Gupta. "DEEP LEARNING ALGORITHMS FOR DETECTION AND CLASSIFICATION OF CONGENITAL BRAIN ANOMALY." ICTACT Journal on Image and Video Processing 13, no. 4 (2023): 2995–3001. http://dx.doi.org/10.21917/ijivp.2023.0426.
Pełny tekst źródłaKumar D,, Ravi. "Anomaly Detection in Networks." International Scientific Journal of Engineering and Management 04, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47520.
Pełny tekst źródłaAlfardus, Asma, and Danda B. Rawat. "Machine Learning-Based Anomaly Detection for Securing In-Vehicle Networks." Electronics 13, no. 10 (2024): 1962. http://dx.doi.org/10.3390/electronics13101962.
Pełny tekst źródłaGonela Kavya Pavani, Bobba Veeramallu. "Hybrid Machine Learning Framework for Anomaly Detection in 5G Networks." Journal of Information Systems Engineering and Management 10, no. 32s (2025): 733–39. https://doi.org/10.52783/jisem.v10i32s.5406.
Pełny tekst źródłaMažeika, Dalius, and Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU." Mokslas – Lietuvos ateitis 6, no. 2 (2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Pełny tekst źródłaRizwan, Ramsha, Farrukh Aslam Khan, Haider Abbas, and Sajjad Hussain Chauhdary. "Anomaly Detection in Wireless Sensor Networks Using Immune-Based Bioinspired Mechanism." International Journal of Distributed Sensor Networks 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/684952.
Pełny tekst źródłaRozprawy doktorskie na temat "Networks anomalies detection"
Sithirasenan, Elankayer. "Substantiating Anomalies in Wireless Networks Using Outlier Detection Techniques." Thesis, Griffith University, 2009. http://hdl.handle.net/10072/365690.
Pełny tekst źródłaAbuaitah, Giovani Rimon. "ANOMALIES IN SENSOR NETWORK DEPLOYMENTS: ANALYSIS, MODELING, AND DETECTION." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1376594068.
Pełny tekst źródłaVerner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Pełny tekst źródłaKamat, Sai Shyamsunder. "Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259187.
Pełny tekst źródłaKabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.
Pełny tekst źródłaJin, Fang. "Algorithms for Modeling Mass Movements and their Adoption in Social Networks." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/72292.
Pełny tekst źródłaMdini, Maha. "Anomaly detection and root cause diagnosis in cellular networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0144/document.
Pełny tekst źródłaMoussa, Mohamed Ali. "Data gathering and anomaly detection in wireless sensors networks." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1082/document.
Pełny tekst źródłaKy, Joël Roman. "Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks." Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.
Pełny tekst źródłaAudibert, Julien. "Unsupervised anomaly detection in time-series." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS358.
Pełny tekst źródłaKsiążki na temat "Networks anomalies detection"
T, Feagin, Overland D, University of Houston--Clear Lake. Research Institute for Computing and Information Systems., and Lyndon B. Johnson Space Center., eds. Communications and tracking expert systems study. Research Institute for Computing and Information Systems, University of Houston--Clear Lake, 1987.
Znajdź pełny tekst źródłaParisi, Alessandro. Hands-On Artificial Intelligence for Cybersecurity: Implement Smart AI Systems for Preventing Cyber Attacks and Detecting Threats and Network Anomalies. Packt Publishing, Limited, 2019.
Znajdź pełny tekst źródłaHands-On Artificial Intelligence for Cybersecurity: Implement Smart AI Systems for Preventing Cyber Attacks and Detecting Threats and Network Anomalies. de Gruyter GmbH, Walter, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Networks anomalies detection"
Krzysztoń, Mateusz, Marcin Lew, and Michał Marks. "NAD: Machine Learning Based Component for Unknown Attack Detection in Network Traffic." In Cybersecurity of Digital Service Chains. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04036-8_4.
Pełny tekst źródłaAkashi, Osamu, Atsushi Terauchi, Kensuke Fukuda, Toshio Hirotsu, Mitsuru Maruyama, and Toshiharu Sugawara. "Detection and Diagnosis of Inter-AS Routing Anomalies by Cooperative Intelligent Agents." In Ambient Networks. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11568285_16.
Pełny tekst źródłaČermák, Milan, Pavel Čeleda, and Jan Vykopal. "Detection of DNS Traffic Anomalies in Large Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13488-8_20.
Pełny tekst źródłaDoshi, Vyom, Danish Sheikh, Nishtha Sharma, and Pramod Bide. "Behavioral Anomalies Detection via Human Pose Estimation: A Study on Cheating Detection." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2179-8_26.
Pełny tekst źródłaDawoud, Ahmed, Seyed Shahristani, and Chun Raun. "Unsupervised Deep Learning for Software Defined Networks Anomalies Detection." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59540-4_9.
Pełny tekst źródłaHossain, Md Azam, Iqram Hussain, Baseem Al-Athwari, and Santosh Dahit. "Network Traffic Anomalies Detection Using Machine Learning Algorithm: A Performance Study." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9480-6_26.
Pełny tekst źródłaFañez, Mirko, Enrique A. de la Cal, Javier Sedano, Juan Luis Carús Candas, and Jairo Ramírez Ávila. "Human Acoustic Events Detection as Anomalies in Industrial Environments Using Shallow Unsupervised Techniques." In Lecture Notes in Networks and Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75013-7_10.
Pełny tekst źródłaBhattacharya, Saurabh, and Manju Pandey. "Anomalies Detection on Contemporary Industrial Internet of Things Data for Securing Crucial Devices." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9228-5_2.
Pełny tekst źródłaLaRock, Timothy, Vahan Nanumyan, Ingo Scholtes, Giona Casiraghi, Tina Eliassi-Rad, and Frank Schweitzer. "HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks." In Proceedings of the 2020 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611976236.52.
Pełny tekst źródłaWankhade, Kapil Keshao, Snehlata Dongre, Ravi Chandra, Kishore V. Krishnan, and Srikanth Arasavilli. "Machine Learning-Based Detection of Attacks and Anomalies in Industrial Internet of Things (IIoT) Networks." In Applied Soft Computing and Communication Networks. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2004-0_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Networks anomalies detection"
Mukunthan, M. A., Jose Anand A., Stalin Kesavan, Malini Mutyala, R. Kesavan, and R. Geetha. "Detection of Physical Anomalies in IoT Networks Using Machine Learning Techniques." In 2024 International Conference on Advancement in Renewable Energy and Intelligent Systems (AREIS). IEEE, 2024. https://doi.org/10.1109/areis62559.2024.10893610.
Pełny tekst źródłaRamantanis, Petros, Sébastien Bigo, Fabien Boitier, et al. "Detection of Fiber Macro-Bending Anomalous Events in Operator Networks." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.w2a.30.
Pełny tekst źródłaThakre, N. K., M. Misba, Sri Lavanya Sajja, Shyam K. Fardale, Veera Ankalu Vuyyuru, and M. K. Mohamed Faizal. "Unveiling Market Anomalies: Harnessing Convolutional Neural Networks for Fraud Detection in Finance." In 2024 International Conference on Communication, Control, and Intelligent Systems (CCIS). IEEE, 2024. https://doi.org/10.1109/ccis63231.2024.10931899.
Pełny tekst źródłaTure, Omkar D., Adbelkhan A. Pathan, Varun R. Kawade, Prasad N. Patil, Nutan V. Bansode, and Sonali Y. Sawant. "Early Detection of Fetal Skull Anomalies using Web-Based Convolutional Neural Networks." In 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA). IEEE, 2024. https://doi.org/10.1109/iccubea61740.2024.10774903.
Pełny tekst źródłaHuang, Hao, Tapan Shah, John Karigiannis, and Scott Evans. "Deep Root Cause Analysis: Unveiling Anomalies and Enhancing Fault Detection in Industrial Time Series." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650906.
Pełny tekst źródłaGupta, Sachin, Bhoomi Gupta, and Babita Yadav. "Implementation of AI-Driven Intrusion Detection Systems to Analyze Anomalies and Network Traffic Patterns in Healthcare Networks." In 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0. IEEE, 2025. https://doi.org/10.1109/otcon65728.2025.11070588.
Pełny tekst źródłaCigiri, Rashmi, Gotte Ranjith Kumar, Haider Alabdeli, Y. M. Mahaboob John, and S. Kaliappan. "Harris Corner Detection Algorithm based Long Short-Term Memory for Detecting Distributed Denial of Service Anomalies in Software Defined Networks." In 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC). IEEE, 2024. https://doi.org/10.1109/icdscnc62492.2024.10941199.
Pełny tekst źródłaA, Padmavathi, Muntather Muhsin Hassan, Jashanpreet Singh, F. Anitha Florence Vinola, and N. Naga Saranya. "Securing Blockchain based Supply Chain in Agriculture using Isolated Forests with Local Outlier Factor for Anomalies Detection." In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE, 2024. https://doi.org/10.1109/icmnwc63764.2024.10872393.
Pełny tekst źródłaKannadasan, Tamilarasan. "Twin Support Vector Machine with Minkowski Gaussian Kernel Based Performance Anomalies Detection in Software Application During Runtime." In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE, 2024. https://doi.org/10.1109/icmnwc63764.2024.10872212.
Pełny tekst źródłaKolodziej, Joanna, Mateusz Krzyszton, and Pawel Szynkiewicz. "Anomaly Detection In TCP/IP Networks." In 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0542.
Pełny tekst źródłaRaporty organizacyjne na temat "Networks anomalies detection"
Kirichek, Galina, Vladyslav Harkusha, Artur Timenko, and Nataliia Kulykovska. System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3743.
Pełny tekst źródłaTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Pełny tekst źródłaLeón, Carlos. Detecting anomalous payments networks: A dimensionality reduction approach. Banco de la República de Colombia, 2019. http://dx.doi.org/10.32468/be.1098.
Pełny tekst źródłaAlonso-Robisco, Andrés, Andrés Alonso-Robisco, José Manuel Carbó, et al. Empowering financial supervision: a SupTech experiment using machine learning in an early warning system. Banco de España, 2025. https://doi.org/10.53479/39320.
Pełny tekst źródłaValdez, Luis, and Alexander Heifetz. Detection of Anomalies in Environmental Gamma Radiation Background with Hopfield Artificial Neural Network - Consortium on Nuclear Security Technologies (CONNECT) Q3 Report. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1827413.
Pełny tekst źródłaRinehart, Aaron, M. Gregory, and Wendy Wright. Fixed-station water-quality monitoring at Canaveral National Seashore: 2012 data summary. National Park Service, 2013. https://doi.org/10.36967/2195325.
Pełny tekst źródła