Artykuły w czasopismach na temat „Networks anomalies detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Networks anomalies detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liao, Xiao Ju, Yi Wang, and Hai Lu. "Rule Anomalies Detection in Firewalls." Key Engineering Materials 474-476 (April 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Pełny tekst źródłaRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Pełny tekst źródłaRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Pełny tekst źródłaJuli, Rejito, Stiawan Deris, Alshaflut Ahmed, and Budiarto Rahmat. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. https://doi.org/10.11591/csit.v5i2.pp122-129.
Pełny tekst źródłaNavale, Manisha Pandurang, and Brijendra P. Gupta. "DEEP LEARNING ALGORITHMS FOR DETECTION AND CLASSIFICATION OF CONGENITAL BRAIN ANOMALY." ICTACT Journal on Image and Video Processing 13, no. 4 (2023): 2995–3001. http://dx.doi.org/10.21917/ijivp.2023.0426.
Pełny tekst źródłaKumar D,, Ravi. "Anomaly Detection in Networks." International Scientific Journal of Engineering and Management 04, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47520.
Pełny tekst źródłaAlfardus, Asma, and Danda B. Rawat. "Machine Learning-Based Anomaly Detection for Securing In-Vehicle Networks." Electronics 13, no. 10 (2024): 1962. http://dx.doi.org/10.3390/electronics13101962.
Pełny tekst źródłaGonela Kavya Pavani, Bobba Veeramallu. "Hybrid Machine Learning Framework for Anomaly Detection in 5G Networks." Journal of Information Systems Engineering and Management 10, no. 32s (2025): 733–39. https://doi.org/10.52783/jisem.v10i32s.5406.
Pełny tekst źródłaMažeika, Dalius, and Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU." Mokslas – Lietuvos ateitis 6, no. 2 (2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Pełny tekst źródłaRizwan, Ramsha, Farrukh Aslam Khan, Haider Abbas, and Sajjad Hussain Chauhdary. "Anomaly Detection in Wireless Sensor Networks Using Immune-Based Bioinspired Mechanism." International Journal of Distributed Sensor Networks 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/684952.
Pełny tekst źródłaLegashev, Leonid, Irina Bolodurina, Lubov Zabrodina, et al. "Message Authentication and Network Anomalies Detection in Vehicular Ad Hoc Networks." Security and Communication Networks 2022 (February 24, 2022): 1–18. http://dx.doi.org/10.1155/2022/9440886.
Pełny tekst źródłaMillán-Roures, Laura, Irene Epifanio, and Vicente Martínez. "Detection of Anomalies in Water Networks by Functional Data Analysis." Mathematical Problems in Engineering 2018 (June 21, 2018): 1–13. http://dx.doi.org/10.1155/2018/5129735.
Pełny tekst źródłaRovatsos, Georgios, George V. Moustakides, and Venugopal V. Veeravalli. "Quickest Detection of Moving Anomalies in Sensor Networks." IEEE Journal on Selected Areas in Information Theory 2, no. 2 (2021): 762–73. http://dx.doi.org/10.1109/jsait.2021.3076043.
Pełny tekst źródłaMelnikov, Oleg, Yurii Dorofieiev, and Natalia Marchenko. "STATISTICAL APPROACH TO DETECTION OF ANOMALIES IN WATER DISTRIBUTION NETWORKS." Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, no. 1 (13) (July 11, 2025): 3–9. https://doi.org/10.20998/2079-0023.2025.01.01.
Pełny tekst źródłaRajaboevich, Gulomov Sherzod, and Ganiev Abdukhalil Abdujalilovich. "Methods and models of protecting computer networks from un-wanted network traffic." International Journal of Engineering & Technology 7, no. 4 (2018): 2541. http://dx.doi.org/10.14419/ijet.v7i4.14744.
Pełny tekst źródłaA, Nandini. "Anomaly Detection Using CNN with I3D Feature Extraction." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem29371.
Pełny tekst źródłaNabil, Meriem, Meriem Hnida, Abdelhay Haqiq, and Imane Hilal. "Advanced Anomaly Detection in Mobile Networks: A Hybrid Approach Based on Statistical and Machine Learning Techniques." International Journal of Interactive Mobile Technologies (iJIM) 19, no. 13 (2025): 162–82. https://doi.org/10.3991/ijim.v19i13.54539.
Pełny tekst źródłaGutiérrez-Gómez, Leonardo, Alexandre Bovet, and Jean-Charles Delvenne. "Multi-Scale Anomaly Detection on Attributed Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (2020): 678–85. http://dx.doi.org/10.1609/aaai.v34i01.5409.
Pełny tekst źródłaYallamanda Rajesh Babu, Et al. "Subgraph Anomaly Detection in Social Networks using Clustering-Based Deep Autoencoders." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 1646–55. http://dx.doi.org/10.17762/ijritcc.v11i9.9150.
Pełny tekst źródłaMa, Shu Hua, Jin Kuan Wang, Zhi Gang Liu, and Hou Yan Jiang. "Density-Based Distributed Elliptical Anomaly Detection in Wireless Sensor Networks." Applied Mechanics and Materials 249-250 (December 2012): 226–30. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.226.
Pełny tekst źródłaM I, Tapasvi. "Anomaly Detection to Network Instrusion:A Systematic Literature Review." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem46842.
Pełny tekst źródłaYu, Xiang, Hui Lu, Xianfei Yang, et al. "An adaptive method based on contextual anomaly detection in Internet of Things through wireless sensor networks." International Journal of Distributed Sensor Networks 16, no. 5 (2020): 155014772092047. http://dx.doi.org/10.1177/1550147720920478.
Pełny tekst źródła., Tanvirahmedshuvo, Asif Iqbal, Emon Ahmed, Ashequr Rahman, and Md Risalat Hossain Ontor. "ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS." American Journal of Engineering and Technology 06, no. 11 (2024): 78–91. https://doi.org/10.37547/tajet/volume06issue11-09.
Pełny tekst źródłamedshuvo, Tanvirah, Asif Iqbal, Emon Ahmed, Ashequr Rahman, and Md Risalat Hossain Ontor. "ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS." International journal of networks and security 04, no. 01 (2024): 33–43. http://dx.doi.org/10.55640/ijns-04-01-07.
Pełny tekst źródłaLubis, Hartati Tammamah, Roslina Roslina, and Lili Tanti. "Anomaly Detection in Computer Networks Using Isolation Forest in Data Mining." JURNAL TEKNIK INFORMATIKA 18, no. 1 (2025): 77–86. https://doi.org/10.15408/jti.v18i1.44285.
Pełny tekst źródłaBadr, Malek, Shaha Al-Otaibi, Nazik Alturki, and Tanvir Abir. "Deep Learning-Based Networks for Detecting Anomalies in Chest X-Rays." BioMed Research International 2022 (July 23, 2022): 1–10. http://dx.doi.org/10.1155/2022/7833516.
Pełny tekst źródłaP. Chiranjeevi, Yadavalli Ramya, Chinthala Balaji, Bathini Shashank, and Abbdi Sainath Reddy. "Uncovering time series anomaly using deep learning technique." World Journal of Advanced Research and Reviews 22, no. 1 (2024): 879–87. http://dx.doi.org/10.30574/wjarr.2024.22.1.1129.
Pełny tekst źródłaP., Chiranjeevi, Ramya Yadavalli, Balaji Chinthala, Shashank Bathini, and Sainath Reddy Abbdi. "Uncovering time series anomaly using deep learning technique." World Journal of Advanced Research and Reviews 22, no. 1 (2024): 879–87. https://doi.org/10.5281/zenodo.14210373.
Pełny tekst źródłaM. Mari Selvam, Shaik Ansar, Moramreddy Praveen, Akula Sireesha, and Padarthi Surekha. "Target Detection by Optimizing Anomaly Detection in Hyperspectral Image Processing using AI/ML." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 2 (2025): 3391–97. https://doi.org/10.32628/cseit25112816.
Pełny tekst źródłaDehbozorgi, Leila, Reza Akbari-Hasanjani, and Reza Sabbaghi-Nadooshan. "Chaotic seismic signal modeling based on noise and earthquake anomaly detection." Facta universitatis - series: Electronics and Energetics 35, no. 4 (2022): 603–17. http://dx.doi.org/10.2298/fuee2204603d.
Pełny tekst źródłaTonejc, Jernej, Sabrina Güttes, Alexandra Kobekova, and Jaspreet Kaur. "Machine Learning Methods for Anomaly Detection in BACnet Networks." JUCS - Journal of Universal Computer Science 22, no. (9) (2016): 1203–24. https://doi.org/10.3217/jucs-022-09-1203.
Pełny tekst źródłaPETLIAK, Nataliia, Kostiantyn BILETSKYI, and Yana ZASTAVNA. "APPROACH TO DETECTION OF ANOMALOUS NETWORK TRAFFIC USING LOF AND HBOS ALGORITHMS." MEASURING AND COMPUTING DEVICES IN TECHNOLOGICAL PROCESSES, no. 4 (November 28, 2024): 125–29. https://doi.org/10.31891/2219-9365-2024-80-15.
Pełny tekst źródłaJames Anderson, Emily Johnson, and Michael Brown. "IoT, Anomaly Detection, Machine Learning, K-Nearest Neighbors, Random Forest, Real-Time Detection." International Journal of Information Engineering and Science 1, no. 1 (2024): 01–06. http://dx.doi.org/10.62951/ijies.v1i1.50.
Pełny tekst źródłaRačys, Donatas, and Dalius Mažeika. "NETWORK TRAFFIC ANOMALIES IDENTIFICATION BASED ON CLASSIFICATION METHODS / TINKLO SRAUTO ANOMALIJŲ IDENTIFIKAVIMAS, TAIKANT KLASIFIKAVIMO METODUS." Mokslas – Lietuvos ateitis 7, no. 3 (2015): 340–44. http://dx.doi.org/10.3846/mla.2015.796.
Pełny tekst źródłaJoseph, Jennifer E., Ngozi Tracy Aleke, and Onyinyechukwu Prisca Onyeanisi. "Deep Learning Based Intrusion Detection System for Network Security in IoT System." International Journal of Education, Management, and Technology 3, no. 1 (2025): 119–38. https://doi.org/10.58578/ijemt.v3i1.4539.
Pełny tekst źródłaWu, Nannan, Wenjun Wang, Feng Chen, Jianxin Li, Bo Li, and Jinpeng Huai. "Uncovering Specific-Shape Graph Anomalies in Attributed Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 5433–40. http://dx.doi.org/10.1609/aaai.v33i01.33015433.
Pełny tekst źródłaYan Lei. "Smart Network Forensics with Generative Adversarial Networks Leveraging Blockchain for Anomaly Detection and Immutable Audit Trails." Power System Technology 48, no. 1 (2024): 1625–42. http://dx.doi.org/10.52783/pst.432.
Pełny tekst źródłaShreyas J, Et al. "Enhancing Cyber Security through Machine Learning-Based Anomaly Detection in IoT Networks." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 10 (2023): 2276–81. http://dx.doi.org/10.17762/ijritcc.v11i10.8948.
Pełny tekst źródłaMeneganti, M., F. S. Saviello, and R. Tagliaferri. "Fuzzy neural networks for classification and detection of anomalies." IEEE Transactions on Neural Networks 9, no. 5 (1998): 848–61. http://dx.doi.org/10.1109/72.712157.
Pełny tekst źródłaBurgueño, Jesús, Isabel de-la-Bandera, Jessica Mendoza, David Palacios, Cesar Morillas, and Raquel Barco. "Online Anomaly Detection System for Mobile Networks." Sensors 20, no. 24 (2020): 7232. http://dx.doi.org/10.3390/s20247232.
Pełny tekst źródłaGeeta and Dr Renuka Arora. "Anomalies Detection in Wireless Sensor Networks with Exploring Various Machine Learning Techniques: Review." International Journal of Engineering and Advanced Technology 14, no. 4 (2025): 15–21. https://doi.org/10.35940/ijeat.d4588.14040425.
Pełny tekst źródłaGeeta. "Anomalies Detection in Wireless Sensor Networks with Exploring Various Machine Learning Techniques: Review." International Journal of Engineering and Advanced Technology (IJEAT) 14, no. 4 (2025): 15–21. https://doi.org/10.35940/ijeat.D4588.14040425.
Pełny tekst źródłaAl-Mazrawe, Amer, and Bahaa Al-Musawi. "Anomaly Detection in Cloud Network: A Review." BIO Web of Conferences 97 (2024): 00019. http://dx.doi.org/10.1051/bioconf/20249700019.
Pełny tekst źródłaSozol, Md Shariar, Golam Mostafa Saki, and Md Mostafizur Rahman. "Anomaly Detection in Cybersecurity with Graph-Based Approaches." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 008 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem37061.
Pełny tekst źródłaAirlangga, Gregorius, Denny Jean Cross Sihombing, and Oskar Ika Adi Nugroho. "Enhancing UAV Communication Security: Multi-Label Anomaly Detection Using Machine Learning in Imbalanced Data Environments." Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) 10, no. 1 (2025): 410. https://doi.org/10.30645/jurasik.v10i1.883.
Pełny tekst źródłade Campos Souza, Paulo Vitor, Augusto Junio Guimarães, Thiago Silva Rezende, Vinicius Jonathan Silva Araujo, and Vanessa Souza Araujo. "Detection of Anomalies in Large-Scale Cyberattacks Using Fuzzy Neural Networks." AI 1, no. 1 (2020): 92–116. http://dx.doi.org/10.3390/ai1010005.
Pełny tekst źródłaAgboola, Olasoji O., Oludare Olukayode Kuye, and Thomas K. Adenowo. "Deep Learning Approaches to Identify Subtle Anomalies in Prenatal Ultrasound Imaging." Path of Science 11, no. 6 (2025): 3019. https://doi.org/10.22178/pos.119-20.
Pełny tekst źródłaDymora, Paweł, and Mirosław Mazurek. "An Innovative Approach to Anomaly Detection in Communication Networks Using Multifractal Analysis." Applied Sciences 10, no. 9 (2020): 3277. http://dx.doi.org/10.3390/app10093277.
Pełny tekst źródłaRana, Samir. "Anomaly Detection in Network Traffic using Machine Learning and Deep Learning Techniques." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, no. 2 (2019): 1063–67. http://dx.doi.org/10.17762/turcomat.v10i2.13626.
Pełny tekst źródłaPatel, Darsh, Kathiravan Srinivasan, Chuan-Yu Chang, Takshi Gupta, and Aman Kataria. "Network Anomaly Detection inside Consumer Networks—A Hybrid Approach." Electronics 9, no. 6 (2020): 923. http://dx.doi.org/10.3390/electronics9060923.
Pełny tekst źródła