Gotowa bibliografia na temat „Neural networks (Computer science)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Neural networks (Computer science)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Neural networks (Computer science)"
Mijwel, Maad M., Adam Esen i Aysar Shamil. "Overview of Neural Networks". Babylonian Journal of Machine Learning 2023 (11.08.2023): 42–45. http://dx.doi.org/10.58496/bjml/2023/008.
Pełny tekst źródłaCottrell, G. W. "COMPUTER SCIENCE: New Life for Neural Networks". Science 313, nr 5786 (28.07.2006): 454–55. http://dx.doi.org/10.1126/science.1129813.
Pełny tekst źródłaLi, Xiao Guang. "Research on the Development and Applications of Artificial Neural Networks". Applied Mechanics and Materials 556-562 (maj 2014): 6011–14. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.6011.
Pełny tekst źródłaSchöneburg, E. "Neural networks hunt computer viruses". Neurocomputing 2, nr 5-6 (lipiec 1991): 243–48. http://dx.doi.org/10.1016/0925-2312(91)90027-9.
Pełny tekst źródłaTurega, M. A. "Neural Networks". Computer Journal 35, nr 3 (1.06.1992): 290. http://dx.doi.org/10.1093/comjnl/35.3.290.
Pełny tekst źródłaWidrow, Bernard, David E. Rumelhart i Michael A. Lehr. "Neural networks". Communications of the ACM 37, nr 3 (marzec 1994): 93–105. http://dx.doi.org/10.1145/175247.175257.
Pełny tekst źródłaBegum, Afsana, Md Masiur Rahman i Sohana Jahan. "Medical diagnosis using artificial neural networks". Mathematics in Applied Sciences and Engineering 5, nr 2 (4.06.2024): 149–64. http://dx.doi.org/10.5206/mase/17138.
Pełny tekst źródłaYen, Gary G., i Haiming Lu. "Hierarchical Rank Density Genetic Algorithm for Radial-Basis Function Neural Network Design". International Journal of Computational Intelligence and Applications 03, nr 03 (wrzesień 2003): 213–32. http://dx.doi.org/10.1142/s1469026803000975.
Pełny tekst źródłaCavallaro, Lucia, Ovidiu Bagdasar, Pasquale De Meo, Giacomo Fiumara i Antonio Liotta. "Artificial neural networks training acceleration through network science strategies". Soft Computing 24, nr 23 (9.09.2020): 17787–95. http://dx.doi.org/10.1007/s00500-020-05302-y.
Pełny tekst źródłaKumar, G. Prem, i P. Venkataram. "Network restoration using recurrent neural networks". International Journal of Network Management 8, nr 5 (wrzesień 1998): 264–73. http://dx.doi.org/10.1002/(sici)1099-1190(199809/10)8:5<264::aid-nem298>3.0.co;2-o.
Pełny tekst źródłaRozprawy doktorskie na temat "Neural networks (Computer science)"
Landassuri, Moreno Victor Manuel. "Evolution of modular neural networks". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3243/.
Pełny tekst źródłaSloan, Cooper Stokes. "Neural bus networks". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119711.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 65-68).
Bus schedules are unreliable, leaving passengers waiting and increasing commute times. This problem can be solved by modeling the traffic network, and delivering predicted arrival times to passengers. Research attempts to model traffic networks use historical, statistical and learning based models, with learning based models achieving the best results. This research compares several neural network architectures trained on historical data from Boston buses. Three models are trained: multilayer perceptron, convolutional neural network and recurrent neural network. Recurrent neural networks show the best performance when compared to feed forward models. This indicates that neural time series models are effective at modeling bus networks. The large amount of data available for training bus network models and the effectiveness of large neural networks at modeling this data show that great progress can be made in improving commutes for passengers.
by Cooper Stokes Sloan.
M. Eng.
Khan, Altaf Hamid. "Feedforward neural networks with constrained weights". Thesis, University of Warwick, 1996. http://wrap.warwick.ac.uk/4332/.
Pełny tekst źródłaZaghloul, Waleed A. Lee Sang M. "Text mining using neural networks". Lincoln, Neb. : University of Nebraska-Lincoln, 2005. http://0-www.unl.edu.library.unl.edu/libr/Dissertations/2005/Zaghloul.pdf.
Pełny tekst źródłaTitle from title screen (sites viewed on Oct. 18, 2005). PDF text: 100 p. : col. ill. Includes bibliographical references (p. 95-100 of dissertation).
Hadjifaradji, Saeed. "Learning algorithms for restricted neural networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/NQ48102.pdf.
Pełny tekst źródłaCheung, Ka Kit. "Neural networks for optimization". HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/291.
Pełny tekst źródłaAhamed, Woakil Uddin. "Quantum recurrent neural networks for filtering". Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.
Pełny tekst źródłaWilliams, Bryn V. "Evolutionary neural networks : models and applications". Thesis, Aston University, 1995. http://publications.aston.ac.uk/10635/.
Pełny tekst źródłaDe, Jongh Albert. "Neural network ensembles". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50035.
Pełny tekst źródłaENGLISH ABSTRACT: It is possible to improve on the accuracy of a single neural network by using an ensemble of diverse and accurate networks. This thesis explores diversity in ensembles and looks at the underlying theory and mechanisms employed to generate and combine ensemble members. Bagging and boosting are studied in detail and I explain their success in terms of well-known theoretical instruments. An empirical evaluation of their performance is conducted and I compare them to a single classifier and to each other in terms of accuracy and diversity.
AFRIKAANSE OPSOMMING: Dit is moontlik om op die akkuraatheid van 'n enkele neurale netwerk te verbeter deur 'n ensemble van diverse en akkurate netwerke te gebruik. Hierdie tesis ondersoek diversiteit in ensembles, asook die meganismes waardeur lede van 'n ensemble geskep en gekombineer kan word. Die algoritmes "bagging" en "boosting" word in diepte bestudeer en hulle sukses word aan die hand van bekende teoretiese instrumente verduidelik. Die prestasie van hierdie twee algoritmes word eksperimenteel gemeet en hulle akkuraatheid en diversiteit word met 'n enkele netwerk vergelyk.
Lee, Ji Young Ph D. Massachusetts Institute of Technology. "Information extraction with neural networks". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111905.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-97).
Electronic health records (EHRs) have been widely adopted, and are a gold mine for clinical research. However, EHRs, especially their text components, remain largely unexplored due to the fact that they must be de-identified prior to any medical investigation. Existing systems for de-identification rely on manual rules or features, which are time-consuming to develop and fine-tune for new datasets. In this thesis, we propose the first de-identification system based on artificial neural networks (ANNs), which achieves state-of-the-art results without any human-engineered features. The ANN architecture is extended to incorporate features, further improving the de-identification performance. Under practical considerations, we explore transfer learning to take advantage of large annotated dataset to improve the performance on datasets with limited number of annotations. The ANN-based system is publicly released as an easy-to-use software package for general purpose named-entity recognition as well as de-identification. Finally, we present an ANN architecture for relation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).
by Ji Young Lee.
Ph. D.
Książki na temat "Neural networks (Computer science)"
Dominique, Valentin, i Edelman Betty, red. Neural networks. Thousand Oaks, Calif: Sage Publications, 1999.
Znajdź pełny tekst źródła1931-, Taylor John, i UNICOM Seminars, red. Neural networks. Henley-on-Thames: A. Waller, 1995.
Znajdź pełny tekst źródła1948-, Vandewalle J., i Roska T, red. Cellular neural networks. Chichester [England]: Wiley, 1993.
Znajdź pełny tekst źródłaBischof, Horst. Pyramidal neural networks. Mahwah, NJ: Lawrence Erlbaum Associates, 1995.
Znajdź pełny tekst źródłaKwon, Seoyun J. Artificial neural networks. Hauppauge, N.Y: Nova Science Publishers, 2010.
Znajdź pełny tekst źródłaMaass, Wolfgang, 1949 Aug. 21- i Bishop Christopher M, red. Pulsed neural networks. Cambridge, Mass: MIT Press, 1999.
Znajdź pełny tekst źródłaCaudill, Maureen. Understanding neural networks: Computer explorations. Cambridge, Mass: MIT Press, 1993.
Znajdź pełny tekst źródłaHu, Xiaolin, i P. Balasubramaniam. Recurrent neural networks. Rijek, Crotia: InTech, 2008.
Znajdź pełny tekst źródłaBaram, Yoram. Nested neural networks. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Neural networks (Computer science)"
ElAarag, Hala. "Neural Networks". W SpringerBriefs in Computer Science, 11–16. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4893-7_3.
Pełny tekst źródłaSiegelmann, Hava T. "Recurrent neural networks". W Computer Science Today, 29–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0015235.
Pełny tekst źródłaYan, Wei Qi. "Convolutional Neural Networks and Recurrent Neural Networks". W Texts in Computer Science, 69–124. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4823-9_3.
Pełny tekst źródłaErtel, Wolfgang. "Neural Networks". W Undergraduate Topics in Computer Science, 221–56. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-299-5_9.
Pełny tekst źródłaErtel, Wolfgang. "Neural Networks". W Undergraduate Topics in Computer Science, 245–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58487-4_9.
Pełny tekst źródłaFeldman, Jerome A. "Neural Networks and Computer Science". W Opportunities and Constraints of Parallel Computing, 37–38. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9668-0_10.
Pełny tekst źródłaKruse, Rudolf, Christian Borgelt, Christian Braune, Sanaz Mostaghim i Matthias Steinbrecher. "General Neural Networks". W Texts in Computer Science, 37–46. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7296-3_4.
Pełny tekst źródłaKruse, Rudolf, Christian Borgelt, Frank Klawonn, Christian Moewes, Matthias Steinbrecher i Pascal Held. "General Neural Networks". W Texts in Computer Science, 37–46. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5013-8_4.
Pełny tekst źródłaKruse, Rudolf, Sanaz Mostaghim, Christian Borgelt, Christian Braune i Matthias Steinbrecher. "General Neural Networks". W Texts in Computer Science, 39–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-42227-1_4.
Pełny tekst źródłaBetti, Alessandro, Marco Gori i Stefano Melacci. "Foveated Neural Networks". W SpringerBriefs in Computer Science, 63–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90987-1_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Neural networks (Computer science)"
Doncow, Sergey, Leonid Orbachevskyi, Valentin Birukow i Nina V. Stepanova. "Artificial Kohonen's neural networks for computer capillarometry". W Optical Information Science and Technology, redaktor Andrei L. Mikaelian. SPIE, 1998. http://dx.doi.org/10.1117/12.304962.
Pełny tekst źródłaNowak, Jakub, Marcin Korytkowski i Rafał Scherer. "Classification of Computer Network Users with Convolutional Neural Networks". W 2018 Federated Conference on Computer Science and Information Systems. IEEE, 2018. http://dx.doi.org/10.15439/2018f321.
Pełny tekst źródłaShastri, Bhavin J., Volker Sorger i Nir Rotenberg. "In situ Training of Silicon Photonic Neural Networks: from Classical to Quantum". W CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm4j.1.
Pełny tekst źródłaDias, L. P., J. J. F. Cerqueira, K. D. R. Assis i R. C. Almeida. "Using artificial neural network in intrusion detection systems to computer networks". W 2017 9th Computer Science and Electronic Engineering (CEEC). IEEE, 2017. http://dx.doi.org/10.1109/ceec.2017.8101615.
Pełny tekst źródłaAraújo, Georger, i Célia Ralha. "Computer Forensic Document Clustering with ART1 Neural Networks". W The Sixth International Conference on Forensic Computer Science. ABEAT, 2011. http://dx.doi.org/10.5769/c2011011.
Pełny tekst źródłaWang, Huiran, i Ruifang Ma. "Optimization of Neural Networks for Network Intrusion Detection". W 2009 First International Workshop on Education Technology and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/etcs.2009.102.
Pełny tekst źródłaEilermann, Sebastian, Christoph Petroll, Philipp Hoefer i Oliver Niggemann. "3D Multi-Criteria Design Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle Using a Conditional Variational Autoencoder". W Computer Science Research Notes. University of West Bohemia, Czech Republic, 2024. http://dx.doi.org/10.24132/csrn.3401.22.
Pełny tekst źródłaSakas, D. P., D. S. Vlachos, T. E. Simos, Theodore E. Simos i George Psihoyios. "Fuzzy Neural Networks for Decision Support in Negotiation". W INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE. AIP, 2008. http://dx.doi.org/10.1063/1.3037115.
Pełny tekst źródła"Speech Emotion Recognition using Convolutional Neural Networks and Recurrent Neural Networks with Attention Model". W 2019 the 9th International Workshop on Computer Science and Engineering. WCSE, 2019. http://dx.doi.org/10.18178/wcse.2019.06.044.
Pełny tekst źródłaČajić, Elvir, Irma Ibrišimović, Alma Šehanović, Damir Bajrić i Julija Ščekić. "Fuzzy Logic And Neural Networks For Disease Detection And Simulation In Matlab". W 9th International Conference on Computer Science, Engineering and Applications. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.132302.
Pełny tekst źródłaRaporty organizacyjne na temat "Neural networks (Computer science)"
Markova, Oksana, Serhiy Semerikov i Maiia Popel. СoCalc as a Learning Tool for Neural Network Simulation in the Special Course “Foundations of Mathematic Informatics”. Sun SITE Central Europe, maj 2018. http://dx.doi.org/10.31812/0564/2250.
Pełny tekst źródłaSemerikov, Serhiy, Illia Teplytskyi, Yuliia Yechkalo, Oksana Markova, Vladimir Soloviev i Arnold Kiv. Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. [б. в.], czerwiec 2019. http://dx.doi.org/10.31812/123456789/3178.
Pełny tekst źródłaGrossberg, Stephen. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, październik 1987. http://dx.doi.org/10.21236/ada189981.
Pełny tekst źródłaSemerikov, Serhiy O., Illia O. Teplytskyi, Yuliia V. Yechkalo i Arnold E. Kiv. Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. [б. в.], listopad 2018. http://dx.doi.org/10.31812/123456789/2648.
Pełny tekst źródłaFarhi, Edward, i Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, grudzień 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Pełny tekst źródłaWillson. L51756 State of the Art Intelligent Control for Large Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 1996. http://dx.doi.org/10.55274/r0010423.
Pełny tekst źródłaModlo, Yevhenii O., Serhiy O. Semerikov, Ruslan P. Shajda, Stanislav T. Tolmachev i Oksana M. Markova. Methods of using mobile Internet devices in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], lipiec 2020. http://dx.doi.org/10.31812/123456789/3878.
Pełny tekst źródłaSAINI, RAVINDER, AbdulKhaliq Alshadid i Lujain Aldosari. Investigation on the application of artificial intelligence in prosthodontics. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, grudzień 2022. http://dx.doi.org/10.37766/inplasy2022.12.0096.
Pełny tekst źródłaJohansen, Richard, Alan Katzenmeyer, Kaytee Pokrzywinski i Molly Reif. A review of sensor-based approaches for monitoring rapid response treatments of cyanoHABs. Engineer Research and Development Center (U.S.), lipiec 2023. http://dx.doi.org/10.21079/11681/47261.
Pełny tekst źródłaSeginer, Ido, James Jones, Per-Olof Gutman i Eduardo Vallejos. Optimal Environmental Control for Indeterminate Greenhouse Crops. United States Department of Agriculture, sierpień 1997. http://dx.doi.org/10.32747/1997.7613034.bard.
Pełny tekst źródła