Artykuły w czasopismach na temat „Neural prosthesis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Neural prosthesis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lin, Xiangli. "Neurophysiology Based on Deep Neural Network under Artificial Prosthesis Vision." Journal of Physics: Conference Series 2074, no. 1 (November 1, 2021): 012083. http://dx.doi.org/10.1088/1742-6596/2074/1/012083.
Pełny tekst źródłaDi, Giovanna, W. Gong, C. Haburcakova, V. Kögler, J. Carpaneto, V. Genovese, D. Merfeld, et al. "Development of a closed-loop neural prosthesis for vestibular disorders." Journal of Automatic Control 20, no. 1 (2010): 27–32. http://dx.doi.org/10.2298/jac1001027d.
Pełny tekst źródłaBoshlyakov, Andrew A., and Alexander S. Ermakov. "Development of a Vision System for an Intelligent Robotic Hand Prosthesis Using Neural Network Technology." ITM Web of Conferences 35 (2020): 04006. http://dx.doi.org/10.1051/itmconf/20203504006.
Pełny tekst źródłaPitkin, Mark, Charles Cassidy, Maxim A. Shevtsov, Joshua R. Jarrell, Hangue Park, Brad J. Farrell, John F. Dalton, et al. "Recent Progress in Animal Studies of the Skin- and Bone-integrated Pylon With Deep Porosity for Bone-Anchored Limb Prosthetics With and Without Neural Interface." Military Medicine 186, Supplement_1 (January 1, 2021): 688–95. http://dx.doi.org/10.1093/milmed/usaa445.
Pełny tekst źródłaMundkur, Nipun. "Bionic Human: A Review of Interface Modalities for Externally Powered Prosthetic Limbs." McGill Science Undergraduate Research Journal 14, no. 1 (April 10, 2019): 46–49. http://dx.doi.org/10.26443/msurj.v14i1.53.
Pełny tekst źródłaCopeland, Christopher, Mukul Mukherjee, Yingying Wang, Kaitlin Fraser, and Jorge M. Zuniga. "Changes in Sensorimotor Cortical Activation in Children Using Prostheses and Prosthetic Simulators." Brain Sciences 11, no. 8 (July 27, 2021): 991. http://dx.doi.org/10.3390/brainsci11080991.
Pełny tekst źródłaRichter, Claus-Peter, Andrew J. Fishman, and Agnella D. Izzo. "Cochlear Nerve Stimulation With Optical Radiation." Otolaryngology–Head and Neck Surgery 139, no. 2_suppl (August 2008): P99. http://dx.doi.org/10.1016/j.otohns.2008.05.519.
Pełny tekst źródłaCunningham, John P., Paul Nuyujukian, Vikash Gilja, Cindy A. Chestek, Stephen I. Ryu, and Krishna V. Shenoy. "A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces." Journal of Neurophysiology 105, no. 4 (April 2011): 1932–49. http://dx.doi.org/10.1152/jn.00503.2010.
Pełny tekst źródłaLARYIONAVA, KATSIARYNA, and DOMINIK GROSS. "Public Understanding of Neural Prosthetics in Germany: Ethical, Social, and Cultural Challenges." Cambridge Quarterly of Healthcare Ethics 20, no. 3 (May 20, 2011): 434–39. http://dx.doi.org/10.1017/s0963180111000119.
Pełny tekst źródłaBakay, Roy A. E., and Prasad S. S. V. Vannemreddy. "Neural Prosthesis: Concept and Progress." World Neurosurgery 78, no. 6 (December 2012): 576–78. http://dx.doi.org/10.1016/j.wneu.2011.10.023.
Pełny tekst źródłaChang, Ying, Lan Wang, Lingjie Lin, and Ming Liu. "Deep Neural Network for Electromyography Signal Classification via Wearable Sensors." International Journal of Distributed Systems and Technologies 13, no. 3 (July 1, 2022): 1–11. http://dx.doi.org/10.4018/ijdst.307988.
Pełny tekst źródłaValle, Giacomo, Albulena Saliji, Ezra Fogle, Andrea Cimolato, Francesco M. Petrini, and Stanisa Raspopovic. "Mechanisms of neuro-robotic prosthesis operation in leg amputees." Science Advances 7, no. 17 (April 2021): eabd8354. http://dx.doi.org/10.1126/sciadv.abd8354.
Pełny tekst źródłaRamírez-García, Alfredo, Lorenzo Leija, and Roberto Muñoz. "Active Upper Limb Prosthesis Based on Natural Movement Trajectories." Prosthetics and Orthotics International 34, no. 1 (March 2010): 58–72. http://dx.doi.org/10.3109/03093640903463792.
Pełny tekst źródłaDai, W. H., and Xiao Dong Zhang. "Design on the System of Brain-Computer Interface Driving Neural Prosthesis Hand." Key Engineering Materials 392-394 (October 2008): 1012–18. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.1012.
Pełny tekst źródłaBroderick, Barry, Paul Breen, and Gearóid Ólaighin. "Electronic stimulators for surface neural prosthesis." Journal of Automatic Control 18, no. 2 (2008): 25–33. http://dx.doi.org/10.2298/jac0802025b.
Pełny tekst źródłaZhang, Xinglei, Binghui Fan, Chuanjiang Wang, Xiaolin Cheng, Hongguang Feng, and Zhaohui Tian. "Random Target Localization for an Upper Limb Prosthesis." Shock and Vibration 2021 (June 19, 2021): 1–14. http://dx.doi.org/10.1155/2021/5297043.
Pełny tekst źródłaMao, Lin, Xiao Lu, Chao Yu, and Kuiying Yin. "Physiological and Neural Changes with Rehabilitation Training in a 53-Year Amputee: A Case Study." Brain Sciences 12, no. 7 (June 26, 2022): 832. http://dx.doi.org/10.3390/brainsci12070832.
Pełny tekst źródłaMarkowitz, Jared, Pavitra Krishnaswamy, Michael F. Eilenberg, Ken Endo, Chris Barnhart, and Hugh Herr. "Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1570 (May 27, 2011): 1621–31. http://dx.doi.org/10.1098/rstb.2010.0347.
Pełny tekst źródłaSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq, Muhammad Faizan Shah, Shaheer Muhammad, Razaullah Khan, and Mohamed Badran. "fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees." Sensors 22, no. 3 (January 18, 2022): 726. http://dx.doi.org/10.3390/s22030726.
Pełny tekst źródłaYan, Gongxing, Jialing Li, Hui Xie, and Minggui Zhou. "5G Virtual Reality System for Prosthetic Wearer Gait Evaluation and Application in Intelligent Prosthesis Debugging." Mobile Information Systems 2022 (September 16, 2022): 1–13. http://dx.doi.org/10.1155/2022/6311065.
Pełny tekst źródłaGibas, Christian, Luca Mülln, and Rainer Brück. "Use of artificial intelligence and neural networks for analysis and gesture detection in electrical impedance tomography." Current Directions in Biomedical Engineering 6, no. 3 (September 1, 2020): 489–92. http://dx.doi.org/10.1515/cdbme-2020-3126.
Pełny tekst źródłaCaravaca-Rodriguez, Daniel, Susana P. Gaytan, Gregg J. Suaning, and Alejandro Barriga-Rivera. "Implications of Neural Plasticity in Retinal Prosthesis." Investigative Opthalmology & Visual Science 63, no. 11 (October 17, 2022): 11. http://dx.doi.org/10.1167/iovs.63.11.11.
Pełny tekst źródłaGuenther, Frank H. "Real‐time speech synthesis for neural prosthesis." Journal of the Acoustical Society of America 125, no. 4 (April 2009): 2496. http://dx.doi.org/10.1121/1.4783342.
Pełny tekst źródłaHepp, D., J. Kirsch, and F. Capanni. "Smartphone supported upper limb prosthesis." Current Directions in Biomedical Engineering 1, no. 1 (September 1, 2015): 484–87. http://dx.doi.org/10.1515/cdbme-2015-0116.
Pełny tekst źródłaGini, Giuseppina, Matteo Arvetti, Ian Somlai, and Michele Folgheraiter. "Acquisition and Analysis of EMG Signals to Recognize Multiple Hand Movements for Prosthetic Applications." Applied Bionics and Biomechanics 9, no. 2 (2012): 145–55. http://dx.doi.org/10.1155/2012/792359.
Pełny tekst źródłaLin, Chin-Yu, Wan-Shiun Lou, Jyh-Chern Chen, Kuo-Yao Weng, Ming-Cheng Shih, Ya-Wen Hung, Zhu-Yin Chen, and Mei-Chih Wang. "Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment." Micromachines 11, no. 12 (November 30, 2020): 1064. http://dx.doi.org/10.3390/mi11121064.
Pełny tekst źródłaDavoodi, Rahman, and Gerald E. Loeb. "Development of a Physics-Based Target Shooting Game to Train Amputee Users of Multijoint Upper Limb Prostheses." Presence: Teleoperators and Virtual Environments 21, no. 1 (February 2012): 85–95. http://dx.doi.org/10.1162/pres_a_00091.
Pełny tekst źródłaBARRETT, JOHN MARTIN, ROLANDO BERLINGUER-PALMINI, and PATRICK DEGENAAR. "Optogenetic approaches to retinal prosthesis." Visual Neuroscience 31, no. 4-5 (August 6, 2014): 345–54. http://dx.doi.org/10.1017/s0952523814000212.
Pełny tekst źródłaSinkjaer, Thomas. "Integrating Sensory Nerve Signals Into Neural Prosthesis Devices." Neuromodulation: Technology at the Neural Interface 3, no. 1 (January 2000): 34–41. http://dx.doi.org/10.1046/j.1525-1403.2000.00035.x.
Pełny tekst źródłaGilja, Vikash, Chethan Pandarinath, Christine H. Blabe, Paul Nuyujukian, John D. Simeral, Anish A. Sarma, Brittany L. Sorice, et al. "Clinical translation of a high-performance neural prosthesis." Nature Medicine 21, no. 10 (September 28, 2015): 1142–45. http://dx.doi.org/10.1038/nm.3953.
Pełny tekst źródłaIonescu, C. M., and R. M. C. De Keyser. "Control of paralyzed skeletal muscles: A neural prosthesis." Computer Methods in Biomechanics and Biomedical Engineering 8, sup1 (September 2005): 145–46. http://dx.doi.org/10.1080/10255840512331388678.
Pełny tekst źródłaNormann, Richard A., Edwin M. Maynard, Patrick J. Rousche, and David J. Warren. "A neural interface for a cortical vision prosthesis." Vision Research 39, no. 15 (July 1999): 2577–87. http://dx.doi.org/10.1016/s0042-6989(99)00040-1.
Pełny tekst źródłaHussain, Jabbar Salman, Ahmed Al-Khazzar, and Mithaq Nama Raheema. "Recognition of additional myo armband gestures for myoelectric prosthetic applications." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 6 (December 1, 2020): 5694. http://dx.doi.org/10.11591/ijece.v10i6.pp5694-5702.
Pełny tekst źródłaSun, Baofeng, and Wanzhong Chen. "CLASSIFICATION OF sEMG SIGNALS USING INTEGRATED NEURAL NETWORK WITH SMALL SIZED TRAINING DATA." Biomedical Engineering: Applications, Basis and Communications 24, no. 04 (August 2012): 365–76. http://dx.doi.org/10.4015/s1016237212500329.
Pełny tekst źródłaMurray, Rosemarie, Joel Mendez, Lukas Gabert, Nicholas P. Fey, Honghai Liu, and Tommaso Lenzi. "Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks." Sensors 22, no. 23 (December 1, 2022): 9350. http://dx.doi.org/10.3390/s22239350.
Pełny tekst źródłaLi, Will X. Y., Ray C. C. Cheung, Yao Xin, Dong Song, and Theodore W. Berger. "An FPGA-Based High-Performance Neural Ensemble Spiking Activity Simulator Utilizing Generalized Volterra Kernel and Complexity Analysis." Journal of Circuits, Systems and Computers 25, no. 01 (November 15, 2015): 1640004. http://dx.doi.org/10.1142/s0218126616400041.
Pełny tekst źródłaBuss, Stephanie. "From Visual Plasticity to the Bionic Eye." Einstein Journal of Biology and Medicine 27, no. 1 (March 2, 2016): 10. http://dx.doi.org/10.23861/ejbm20112725.
Pełny tekst źródłaJothi Lakshmi, D., G. Illakiya, and R. Rajkamal. "A Novel Approach and Design of Embedded Controlled Prosthetic Upper Limb to Assist the above Elbow Amputees." Advanced Materials Research 403-408 (November 2011): 2039–45. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.2039.
Pełny tekst źródłaEmayavaramban, G., A. Amudha, T. Rajendran, M. Sivaramkumar, K. Balachandar, and T. Ramesh. "Identifying User Suitability in sEMG Based Hand Prosthesis Using Neural Networks." Current Signal Transduction Therapy 14, no. 2 (October 10, 2019): 158–64. http://dx.doi.org/10.2174/1574362413666180604100542.
Pełny tekst źródłaLai, Qiuxia, Dingyin Hu, Ang Ke, and Jiping He. "Providing Sensory Feedback Using Electrical Stimulation for Neural Prosthesis." Neuroscience and Biomedical Engineering 2, no. 2 (April 10, 2015): 99–104. http://dx.doi.org/10.2174/2213385203666150328002141.
Pełny tekst źródłaGong, Wangsong, and Daniel M. Merfeld. "Prototype Neural Semicircular Canal Prosthesis using Patterned Electrical Stimulation." Annals of Biomedical Engineering 28, no. 5 (May 2000): 572–81. http://dx.doi.org/10.1114/1.293.
Pełny tekst źródłaTroyk, P., and Zhe Hu. "Simplified Design Equations for Class-E Neural Prosthesis Transmitters." IEEE Transactions on Biomedical Engineering 60, no. 5 (May 2013): 1414–21. http://dx.doi.org/10.1109/tbme.2012.2237172.
Pełny tekst źródłaPurcell, E. K., J. P. Seymour, S. Yandamuri, and D. R. Kipke. "In vivoevaluation of a neural stem cell-seeded prosthesis." Journal of Neural Engineering 6, no. 4 (July 22, 2009): 049801. http://dx.doi.org/10.1088/1741-2552/6/4/049801.
Pełny tekst źródłaHageman, Kristin N., Zaven K. Kalayjian, Francisco Tejada, Bryce Chiang, Mehdi A. Rahman, Gene Y. Fridman, Chenkai Dai, et al. "A CMOS Neural Interface for a Multichannel Vestibular Prosthesis." IEEE Transactions on Biomedical Circuits and Systems 10, no. 2 (April 2016): 269–79. http://dx.doi.org/10.1109/tbcas.2015.2409797.
Pełny tekst źródłaKalanovic, Vojislav D., and Nils T. Skaug. "Feedback Error Learning Neural Network for Above-Knee Prosthesis." IFAC Proceedings Volumes 30, no. 6 (May 1997): 1617–22. http://dx.doi.org/10.1016/s1474-6670(17)43592-0.
Pełny tekst źródłaPurcell, E. K., J. P. Seymour, S. Yandamuri, and D. R. Kipke. "In vivoevaluation of a neural stem cell-seeded prosthesis." Journal of Neural Engineering 6, no. 2 (March 13, 2009): 026005. http://dx.doi.org/10.1088/1741-2560/6/2/026005.
Pełny tekst źródłaSeligman, Peter. "Prototype to product—developing a commercially viable neural prosthesis." Journal of Neural Engineering 6, no. 6 (October 23, 2009): 065006. http://dx.doi.org/10.1088/1741-2560/6/6/065006.
Pełny tekst źródłaBerger, Theodore W., Robert E. Hampson, Dong Song, Anushka Goonawardena, Vasilis Z. Marmarelis, and Sam A. Deadwyler. "A cortical neural prosthesis for restoring and enhancing memory." Journal of Neural Engineering 8, no. 4 (June 15, 2011): 046017. http://dx.doi.org/10.1088/1741-2560/8/4/046017.
Pełny tekst źródłaKalanovic, V. D., D. Popovic, and N. T. Skaug. "Feedback error learning neural network for trans-femoral prosthesis." IEEE Transactions on Rehabilitation Engineering 8, no. 1 (March 2000): 71–80. http://dx.doi.org/10.1109/86.830951.
Pełny tekst źródłaMiler, Vera, Goran Bijelic, and Laszlo Schwirtlich. "Neural prosthesis for the therapy of low back pain." Journal of Automatic Control 18, no. 2 (2008): 93–97. http://dx.doi.org/10.2298/jac0802093m.
Pełny tekst źródła