Artykuły w czasopismach na temat „Neural state-space models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Neural state-space models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Korbicz, Józef, Marcin Mrugalski i Thomas Parisini. "DESIGNING STATE-SPACE MODELS WITH NEURAL NETWORKS". IFAC Proceedings Volumes 35, nr 1 (2002): 459–64. http://dx.doi.org/10.3182/20020721-6-es-1901.01630.
Pełny tekst źródłaSchüssler, Max. "Machine learning with nonlinear state space models". at - Automatisierungstechnik 70, nr 11 (27.10.2022): 1027–28. http://dx.doi.org/10.1515/auto-2022-0089.
Pełny tekst źródłaHe, Mingjian, Proloy Das, Gladia Hotan i Patrick L. Purdon. "Switching state-space modeling of neural signal dynamics". PLOS Computational Biology 19, nr 8 (28.08.2023): e1011395. http://dx.doi.org/10.1371/journal.pcbi.1011395.
Pełny tekst źródłaForgione, Marco, i Dario Piga. "Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification". IFAC-PapersOnLine 56, nr 2 (2023): 4082–87. http://dx.doi.org/10.1016/j.ifacol.2023.10.1736.
Pełny tekst źródłaRaol, J. R. "Parameter estimation of state space models by recurrent neural networks". IEE Proceedings - Control Theory and Applications 142, nr 2 (1.03.1995): 114–18. http://dx.doi.org/10.1049/ip-cta:19951733.
Pełny tekst źródłaBendtsen, J. D., i K. Trangbaek. "Robust quasi-LPV control based on neural state-space models". IEEE Transactions on Neural Networks 13, nr 2 (marzec 2002): 355–68. http://dx.doi.org/10.1109/72.991421.
Pełny tekst źródłaPaninski, Liam, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein i Wei Wu. "A new look at state-space models for neural data". Journal of Computational Neuroscience 29, nr 1-2 (1.08.2009): 107–26. http://dx.doi.org/10.1007/s10827-009-0179-x.
Pełny tekst źródłaGhahramani, Zoubin, i Geoffrey E. Hinton. "Variational Learning for Switching State-Space Models". Neural Computation 12, nr 4 (1.04.2000): 831–64. http://dx.doi.org/10.1162/089976600300015619.
Pełny tekst źródłaAghaee, Mohammad, Stephane Krau, Melih Tamer i Hector Budman. "Graph Neural Network Representation of State Space Models of Metabolic Pathways". IFAC-PapersOnLine 58, nr 14 (2024): 464–69. http://dx.doi.org/10.1016/j.ifacol.2024.08.380.
Pełny tekst źródłaMangion, Andrew Zammit, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan i Guido Sanguinetti. "Online Variational Inference for State-Space Models with Point-Process Observations". Neural Computation 23, nr 8 (sierpień 2011): 1967–99. http://dx.doi.org/10.1162/neco_a_00156.
Pełny tekst źródłaLi, Jiahao, Yang Lu, Yuan Xie i Yanyun Qu. "MaskViM: Domain Generalized Semantic Segmentation with State Space Models". Proceedings of the AAAI Conference on Artificial Intelligence 39, nr 5 (11.04.2025): 4752–60. https://doi.org/10.1609/aaai.v39i5.32502.
Pełny tekst źródłaTimm, Luís Carlos, Daniel Takata Gomes, Emanuel Pimentel Barbosa, Klaus Reichardt, Manoel Dornelas de Souza i José Flávio Dynia. "Neural network and state-space models for studying relationships among soil properties". Scientia Agricola 63, nr 4 (sierpień 2006): 386–95. http://dx.doi.org/10.1590/s0103-90162006000400010.
Pełny tekst źródłaBao, Yajie, Javad Mohammadpour Velni, Aditya Basina i Mahdi Shahbakhti. "Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks". IFAC-PapersOnLine 53, nr 2 (2020): 5286–91. http://dx.doi.org/10.1016/j.ifacol.2020.12.1209.
Pełny tekst źródłaChakrabarty, Ankush, Gordon Wichern i Christopher R. Laughman. "Meta-Learning of Neural State-Space Models Using Data From Similar Systems". IFAC-PapersOnLine 56, nr 2 (2023): 1490–95. http://dx.doi.org/10.1016/j.ifacol.2023.10.1843.
Pełny tekst źródłaMentzer, Katherine L., i J. Luc Peterson. "Neural network surrogate models for equations of state". Physics of Plasmas 30, nr 3 (marzec 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Pełny tekst źródłaShen, Shuaijie, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang i Luziwei Leng. "SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models". Proceedings of the AAAI Conference on Artificial Intelligence 39, nr 19 (11.04.2025): 20380–88. https://doi.org/10.1609/aaai.v39i19.34245.
Pełny tekst źródłaMalik, Wasim Q., Leigh R. Hochberg, John P. Donoghue i Emery N. Brown. "Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces". IEEE Transactions on Biomedical Engineering 62, nr 2 (luty 2015): 570–81. http://dx.doi.org/10.1109/tbme.2014.2360393.
Pełny tekst źródłaSUYKENS, JOHAN A. K., BART L. R. DE MOOR i JOOS VANDEWALLE. "Nonlinear system identification using neural state space models, applicable to robust control design". International Journal of Control 62, nr 1 (lipiec 1995): 129–52. http://dx.doi.org/10.1080/00207179508921536.
Pełny tekst źródłaBendtsen, Jan Dimon, i Jakob Stoustrup. "Gain Scheduling Control of Non linear Systems Based on Neural State Space Models". IFAC Proceedings Volumes 36, nr 11 (czerwiec 2003): 573–78. http://dx.doi.org/10.1016/s1474-6670(17)35725-7.
Pełny tekst źródłaCox, Benjamin, Santiago Segarra i Víctor Elvira. "Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks". Signal Processing 234 (wrzesień 2025): 109998. https://doi.org/10.1016/j.sigpro.2025.109998.
Pełny tekst źródłaBonatti, Colin, i Dirk Mohr. "One for all: Universal material model based on minimal state-space neural networks". Science Advances 7, nr 26 (czerwiec 2021): eabf3658. http://dx.doi.org/10.1126/sciadv.abf3658.
Pełny tekst źródłaWang, Zhiyuan, Xovee Xu, Goce Trajcevski, Kunpeng Zhang, Ting Zhong i Fan Zhou. "PrEF: Probabilistic Electricity Forecasting via Copula-Augmented State Space Model". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 11 (28.06.2022): 12200–12207. http://dx.doi.org/10.1609/aaai.v36i11.21480.
Pełny tekst źródłaCANELON, JOSE I., LEANG S. SHIEH, SHU M. GUO i HEIDAR A. MALKI. "NEURAL NETWORK-BASED DIGITAL REDESIGN APPROACH FOR CONTROL OF UNKNOWN CONTINUOUS-TIME CHAOTIC SYSTEMS". International Journal of Bifurcation and Chaos 15, nr 08 (sierpień 2005): 2433–55. http://dx.doi.org/10.1142/s021812740501340x.
Pełny tekst źródłaRuciński, Dariusz. "Artificial Neural Network based on mathematical models used in quantum computing". Studia Informatica. System and information technology 27, nr 2 (11.01.2023): 27–48. http://dx.doi.org/10.34739/si.2022.27.02.
Pełny tekst źródłaXie, Yusen, i Yingjie Mi. "Optimizing inverted pendulum control: Integrating neural network adaptability". Applied and Computational Engineering 101, nr 1 (8.11.2024): 213–23. http://dx.doi.org/10.54254/2755-2721/101/20241008.
Pełny tekst źródłaRashid, Mustafa, i Prashant Mhaskar. "Are Neural Networks the Right Tool for Process Modeling and Control of Batch and Batch-like Processes?" Processes 11, nr 3 (24.02.2023): 686. http://dx.doi.org/10.3390/pr11030686.
Pełny tekst źródłaFaramarzi, Mojtaba, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma i Sarath Chandar. "PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 1 (28.06.2022): 589–97. http://dx.doi.org/10.1609/aaai.v36i1.19938.
Pełny tekst źródłaDreyfus, Gérard, i Yizhak Idan. "The Canonical Form of Nonlinear Discrete-Time Models". Neural Computation 10, nr 1 (1.01.1998): 133–64. http://dx.doi.org/10.1162/089976698300017926.
Pełny tekst źródłaWang, RuiXue, Kaikang Chen, Bo Zhao, Liming Zhou, Licheng Zhu, Chengxu Lv, Zhenhao Han, Kunlei Lu, Xuguang Feng i Siyuan Zhao. "Construction of Full-Space State Model and Prediction of Plant Growth Information". Journal of the ASABE 68, nr 2 (2025): 133–46. https://doi.org/10.13031/ja.16165.
Pełny tekst źródłaJohn, Dr Jogi, Babita Prasad, Bhushan Murkute, Manav Patil, Aditya Agrawal i Uday Shahu. "Battery Lifespan Prediction Using Machine Learning and NASA Aging Dataset". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, nr 04 (3.04.2025): 1–9. https://doi.org/10.55041/ijsrem43585.
Pełny tekst źródłaWang, Niannian, Weiyi Du, Hongjin Liu, Kuankuan Zhang, Yongbin Li, Yanquan He i Zejun Han. "Fine-Grained Leakage Detection for Water Supply Pipelines Based on CNN and Selective State-Space Models". Water 17, nr 8 (9.04.2025): 1115. https://doi.org/10.3390/w17081115.
Pełny tekst źródłaMeng, Wenjie, Aiming Mu i Huajun Wang. "Efficient UNet fusion of convolutional neural networks and state space models for medical image segmentation". Digital Signal Processing 158 (marzec 2025): 104937. https://doi.org/10.1016/j.dsp.2024.104937.
Pełny tekst źródłaKotta, Ü., F. N. Chowdhury i S. Nõmm. "On realizability of neural networks-based input–output models in the classical state-space form". Automatica 42, nr 7 (lipiec 2006): 1211–16. http://dx.doi.org/10.1016/j.automatica.2006.03.003.
Pełny tekst źródłaKrikelis, Konstantinos, Jin-Song Pei, Koos van Berkel i Maarten Schoukens. "Identification of structured nonlinear state–space models for hysteretic systems using neural network hysteresis operators". Measurement 224 (styczeń 2024): 113966. http://dx.doi.org/10.1016/j.measurement.2023.113966.
Pełny tekst źródłaPang, Shuwei, Haoyuan Lu, Qiuhong Li i Ziyu Gu. "An Improved Onboard Adaptive Aero-Engine Model Based on an Enhanced Neural Network and Linear Parameter Variance for Parameter Prediction". Energies 17, nr 12 (12.06.2024): 2888. http://dx.doi.org/10.3390/en17122888.
Pełny tekst źródłaSimionato, Riccardo, i Stefano Fasciani. "Modeling Time-Variant Responses of Optical Compressors With Selective State Space Models". Journal of the Audio Engineering Society 73, nr 3 (7.04.2025): 144–65. https://doi.org/10.17743/jaes.2022.0194.
Pełny tekst źródłaChen, Hanlin, Li'an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, David Doermann i Rongrong Ji. "Binarized Neural Architecture Search". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 07 (3.04.2020): 10526–33. http://dx.doi.org/10.1609/aaai.v34i07.6624.
Pełny tekst źródłaZhou, Xun, Xingyu Wu, Liang Feng, Zhichao Lu i Kay Chen Tan. "Design Principle Transfer in Neural Architecture Search via Large Language Models". Proceedings of the AAAI Conference on Artificial Intelligence 39, nr 21 (11.04.2025): 23000–23008. https://doi.org/10.1609/aaai.v39i21.34463.
Pełny tekst źródłaLiu, Qiao, Jiaze Xu, Rui Jiang i Wing Hung Wong. "Density estimation using deep generative neural networks". Proceedings of the National Academy of Sciences 118, nr 15 (8.04.2021): e2101344118. http://dx.doi.org/10.1073/pnas.2101344118.
Pełny tekst źródłaXie, Guotian. "Redundancy-Aware Pruning of Convolutional Neural Networks". Neural Computation 32, nr 12 (grudzień 2020): 2532–56. http://dx.doi.org/10.1162/neco_a_01330.
Pełny tekst źródłaZhang, Peng, Wenjie Hui, Benyou Wang, Donghao Zhao, Dawei Song, Christina Lioma i Jakob Grue Simonsen. "Complex-valued Neural Network-based Quantum Language Models". ACM Transactions on Information Systems 40, nr 4 (31.10.2022): 1–31. http://dx.doi.org/10.1145/3505138.
Pełny tekst źródłaLee, JoonSeong, i . "Analysis Methodology of Inelastic Constitutive Parameter Using State Space Method and Neural Network". International Journal of Engineering & Technology 7, nr 3.34 (1.09.2018): 163. http://dx.doi.org/10.14419/ijet.v7i3.34.18938.
Pełny tekst źródłaCHEN, CHEN-YUAN, JOHN RONG-CHUNG HSU i CHENG-WU CHEN. "FUZZY LOGIC DERIVATION OF NEURAL NETWORK MODELS WITH TIME DELAYS IN SUBSYSTEMS". International Journal on Artificial Intelligence Tools 14, nr 06 (grudzień 2005): 967–74. http://dx.doi.org/10.1142/s021821300500248x.
Pełny tekst źródłaAbbas, H., i H. Werner. "LPV Design of Charge Control for an SI Engine Based on LFT Neural State-Space Models". IFAC Proceedings Volumes 41, nr 2 (2008): 7427–32. http://dx.doi.org/10.3182/20080706-5-kr-1001.01255.
Pełny tekst źródłaAbbas, H., i H. Werner. "Polytopic Quasi-LPV Models Based on Neural State-Space Models and Application to Air Charge Control of a SI Engine". IFAC Proceedings Volumes 41, nr 2 (2008): 6466–71. http://dx.doi.org/10.3182/20080706-5-kr-1001.01090.
Pełny tekst źródłaWang, Yiren, Lijun Wu, Yingce Xia, Tao Qin, ChengXiang Zhai i Tie-Yan Liu. "Transductive Ensemble Learning for Neural Machine Translation". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 6291–98. http://dx.doi.org/10.1609/aaai.v34i04.6097.
Pełny tekst źródłaZhang, Dongxiang, Ziyang Xiao, Yuan Wang, Mingli Song i Gang Chen. "Neural TSP Solver with Progressive Distillation". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 10 (26.06.2023): 12147–54. http://dx.doi.org/10.1609/aaai.v37i10.26432.
Pełny tekst źródłaRule, Michael, i Guido Sanguinetti. "Autoregressive Point Processes as Latent State-Space Models: A Moment-Closure Approach to Fluctuations and Autocorrelations". Neural Computation 30, nr 10 (październik 2018): 2757–80. http://dx.doi.org/10.1162/neco_a_01121.
Pełny tekst źródłaTuli, Shikhar, Bhishma Dedhia, Shreshth Tuli i Niraj K. Jha. "FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?" Journal of Artificial Intelligence Research 77 (6.05.2023): 39–70. http://dx.doi.org/10.1613/jair.1.13942.
Pełny tekst źródłaSensoy, Murat, Lance Kaplan, Federico Cerutti i Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Pełny tekst źródła