Gotowa bibliografia na temat „Neuromorphic applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Neuromorphic applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Neuromorphic applications"
Bi, Jinming, Yanran Li, Rong Lu, Honglin Song, and Jie Jiang. "Electrolyte-gated optoelectronic transistors for neuromorphic applications." Journal of Semiconductors 46, no. 2 (2025): 021401. https://doi.org/10.1088/1674-4926/24090042.
Pełny tekst źródłaPark, Jisoo, Jihyun Shin, and Hocheon Yoo. "Heterostructure-Based Optoelectronic Neuromorphic Devices." Electronics 13, no. 6 (2024): 1076. http://dx.doi.org/10.3390/electronics13061076.
Pełny tekst źródłaSchuman, Catherine. "(Invited) Application-Hardware Co-Design for Neuromorphic Computing Systems." ECS Meeting Abstracts MA2025-01, no. 63 (2025): 3082. https://doi.org/10.1149/ma2025-01633082mtgabs.
Pełny tekst źródłaMikki, Said. "Generalized Neuromorphism and Artificial Intelligence: Dynamics in Memory Space." Symmetry 16, no. 4 (2024): 492. http://dx.doi.org/10.3390/sym16040492.
Pełny tekst źródłaHenkel, Jorg. "Stochastic Computing for Neuromorphic Applications." IEEE Design & Test 38, no. 6 (2021): 4. http://dx.doi.org/10.1109/mdat.2021.3126288.
Pełny tekst źródłaWang, Weisheng, and Liqiang Zhu. "Electrolyte Gated Transistors for Brain Inspired Neuromorphic Computing and Perception Applications: A Review." Nanomaterials 15, no. 5 (2025): 348. https://doi.org/10.3390/nano15050348.
Pełny tekst źródłaDiao, Yu, Yaoxuan Zhang, Yanran Li, and Jie Jiang. "Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications." Sensors 23, no. 24 (2023): 9779. http://dx.doi.org/10.3390/s23249779.
Pełny tekst źródłaMeng, Xiaohan, Runsheng Gao, Xiaojian Zhu, and Run-Wei Li. "Ion-modulation optoelectronic neuromorphic devices: mechanisms, characteristics, and applications." Journal of Semiconductors 46, no. 2 (2025): 021402. https://doi.org/10.1088/1674-4926/24100025.
Pełny tekst źródłaSchuman, Catherine, Robert Patton, Shruti Kulkarni, et al. "Evolutionary vs imitation learning for neuromorphic control at the edge*." Neuromorphic Computing and Engineering 2, no. 1 (2022): 014002. http://dx.doi.org/10.1088/2634-4386/ac45e7.
Pełny tekst źródłaKurshan, Eren, Hai Li, Mingoo Seok, and Yuan Xie. "A Case for 3D Integrated System Design for Neuromorphic Computing and AI Applications." International Journal of Semantic Computing 14, no. 04 (2020): 457–75. http://dx.doi.org/10.1142/s1793351x20500063.
Pełny tekst źródłaRozprawy doktorskie na temat "Neuromorphic applications"
Chen, Xing. "Modeling and simulations of skyrmionic neuromorphic applications." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST083.
Pełny tekst źródłaShi, Yuanyuan. "Two dimensional materials based electronic synapses for neuromorphic applications." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663415.
Pełny tekst źródłaUppala, Roshni. "Simulating Large Scale Memristor Based Crossbar for Neuromorphic Applications." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429296073.
Pełny tekst źródłaLai, Qianxi. "Electrically configurable materials and devices for intelligent neuromorphic applications." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1872061101&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Pełny tekst źródłaMandal, Saptarshi. "Study of Mn doped HfO2 based Synaptic Devices for Neuromorphic Applications." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1384535471.
Pełny tekst źródłaJouni, Zalfa. "Analog spike-based neuromorphic computing for low-power smart IoT applications." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST114.
Pełny tekst źródłaPedró, Puig Marta. "Implementation of unsupervised learning mechanisms on OxRAM devices for neuromorphic computing applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667894.
Pełny tekst źródłaPetre, Csaba. "Sim2spice a tool for compiling simulink designs on FPAA and applications to neuromorphic circuits /." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31820.
Pełny tekst źródłaHerrmann, Eric. "A Novel Gate Controlled Metal Oxide Resistive Memory Cell and its Applications." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1540565326482153.
Pełny tekst źródłaMARRONE, FRANCESCO. "Memristor-based hardware accelerators: from device modeling to AI applications." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972305.
Pełny tekst źródłaKsiążki na temat "Neuromorphic applications"
Kozma, Robert, Robinson E. Pino, and Giovanni E. Pazienza, eds. Advances in Neuromorphic Memristor Science and Applications. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4491-2.
Pełny tekst źródłaKozma, Robert. Advances in Neuromorphic Memristor Science and Applications. Springer Netherlands, 2012.
Znajdź pełny tekst źródłaBeaton, Paul Timothy, ed. Frontiers in Memristive Materials for Neuromorphic Processing Applications. National Academies Press, 2020. http://dx.doi.org/10.17226/25938.
Pełny tekst źródłaC, Merrill Walter, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Neuromorphic learning of continuous-valued mappings from noise-corrupted data: Application to real-time adaptive control. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Znajdź pełny tekst źródłaBartolozzi, Chiara, Emre O. Neftci, and Elisabetta Chicca, eds. Neuromorphic Engineering Systems and Applications. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-723-1.
Pełny tekst źródłavan Schaik, André, Tobi Delbruck, and Jennifer Hasler, eds. Neuromorphic Engineering Systems and Applications. Frontiers Media SA, 2015. http://dx.doi.org/10.3389/978-2-88919-454-4.
Pełny tekst źródłaDong, Yibo, Min Gu, Elena Goi, Yangyundou Wang, and Zhengfen Wan. Neuromorphic Photonic Devices and Applications. Elsevier, 2023.
Znajdź pełny tekst źródłaWang, Jing, Min Gu, Elena Goi, Yangyundou Wang, and Zhengfen Wan. Neuromorphic Photonic Devices and Applications. Elsevier, 2023.
Znajdź pełny tekst źródłaPazienza, Giovanni E., Robert Kozma, and Robinson E. Pino. Advances in Neuromorphic Memristor Science and Applications. Springer Netherlands, 2016.
Znajdź pełny tekst źródłaAdvances In Neuromorphic Memristor Science And Applications. Springer, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Neuromorphic applications"
Firoozi, Ali Akbar, and Ali Asghar Firoozi. "Case Studies and Real-World Applications." In Neuromorphic Computing. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65549-4_8.
Pełny tekst źródłaNarduzzi, Simon, Loreto Mateu, Petar Jokic, Erfan Azarkhish, and Andrea Dunbar. "Benchmarking Neuromorphic Computing for Inference." In Industrial Artificial Intelligence Technologies and Applications. River Publishers, 2023. http://dx.doi.org/10.1201/9781003377382-1.
Pełny tekst źródłaMilo, Valerio, Gerardo Malavena, Christian Monzio Compagnoni, and Daniele Ielmini. "Memristive/CMOS Devices for Neuromorphic Applications." In Springer Handbook of Semiconductor Devices. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_32.
Pełny tekst źródłaLu, Wei. "RRAM Fabric for Neuromorphic Computing Applications." In From Artificial Intelligence to Brain Intelligence. River Publishers, 2022. http://dx.doi.org/10.1201/9781003338215-10.
Pełny tekst źródłaBhowmik, Debanjan. "Spintronic Oscillators, Their Synchronization Properties, and Applications in Oscillatory Neural Networks (ONNs)." In Spintronics-Based Neuromorphic Computing. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4445-9_7.
Pełny tekst źródłaGómez-Vilda, Pedro, José Manuel Ferrández-Vicente, Victoria Rodellar-Biarge, et al. "Neuromorphic Detection of Vowel Representation Spaces." In New Challenges on Bioinspired Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21326-7_1.
Pełny tekst źródłaHu, Xiaofang, Shukai Duan, Wenbo Song, Jiagui Wu, and Pinaki Mazumder. "Memristor-based Cellular Nonlinear/Neural Network: Design, Analysis and Applications." In Neuromorphic Circuits for Nanoscale Devices. River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-11.
Pełny tekst źródłaIsik, Murat, Hiruna Vishwamith, Yusuf Sur, Kayode Inadagbo, and I. Can Dikmen. "NEUROSEC: FPGA-Based Neuromorphic Audio Security." In Applied Reconfigurable Computing. Architectures, Tools, and Applications. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55673-9_10.
Pełny tekst źródłaPino, Robinson E. "Computational Intelligence and Neuromorphic Computing Architectures." In Advances in Neuromorphic Memristor Science and Applications. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4491-2_6.
Pełny tekst źródłaRyan, Kevin, Sansiri Tanachutiwat, and Wei Wang. "3D CMOL Crossnet for Neuromorphic Network Applications." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02427-6_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Neuromorphic applications"
Shoesmith, Thomas, James C. Knight, Balazs Meszaros, Jonathan Timcheck, and Thomas Nowotny. "Eventprop training for efficient neuromorphic applications." In 2025 Neuro Inspired Computational Elements (NICE). IEEE, 2025. https://doi.org/10.1109/nice65350.2025.11064940.
Pełny tekst źródłaGobin, Derek, Shay Snyder, Guojing Cong, Shruti R. Kulkarni, Catherine Schuman, and Maryam Parsa. "Exploration of Novel Neuromorphic Methodologies for Materials Applications." In 2024 International Conference on Neuromorphic Systems (ICONS). IEEE, 2024. https://doi.org/10.1109/icons62911.2024.00049.
Pełny tekst źródłaDias, Lília M. S., Lianshe Fu, Elias Towe, Rute A. S. Ferreira, and Paulo S. B. André. "Luminescent Waveguides with Synaptic Properties for Photonic Artificial Neural Networks." In CLEO: Applications and Technology. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.12.
Pełny tekst źródłaSchmitt, Erika, Sanchit Gupta, and Patrick Abbs. "Continuous Learning for Real-Time Auditory Blind Source Separation Applications." In 2024 International Conference on Neuromorphic Systems (ICONS). IEEE, 2024. https://doi.org/10.1109/icons62911.2024.00021.
Pełny tekst źródłaYang, Hua, Lihao Yu, Yanjie Lv, et al. "Multi-Strategy Collaborative Improved Seagull Optimization Algorithm and Its Applications." In 2024 International Conference on Neuromorphic Computing (ICNC). IEEE, 2024. https://doi.org/10.1109/icnc64304.2024.10987897.
Pełny tekst źródłaMaier, Patrick, James Rainey, Elena Gheorghiu, Kofi Appiah, and Deepayan Bhowmik. "Digit classification using biologically plausible neuromorphic vision." In Applications of Digital Image Processing XLVII, edited by Andrew G. Tescher and Touradj Ebrahimi. SPIE, 2024. http://dx.doi.org/10.1117/12.3031280.
Pełny tekst źródłaPanes-Ruiz, Luis Antonio, Shirong Huang, Alon Ascoli, Ronald Tetzlaff, and Gianaurelio Cuniberti. "Carbon Nanomaterial-Based Memristive Devices for Neuromorphic Applications." In 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). IEEE, 2024. https://doi.org/10.1109/metroxraine62247.2024.10796782.
Pełny tekst źródłaShainline, Jeffrey M. "Superconducting optoelectronic networks for neuromorphic supercomputing." In Photonic Computing: From Materials and Devices to Systems and Applications, edited by Xingjie Ni and Wenshan Cai. SPIE, 2024. http://dx.doi.org/10.1117/12.3029900.
Pełny tekst źródłaAli, Teymoor, James Rainey, Sook Yen Lau, et al. "An FPGA-based neuromorphic vision system accelerator." In Artificial Intelligence for Security and Defence Applications II, edited by Henri Bouma, Yitzhak Yitzhaky, Radhakrishna Prabhu, and Hugo J. Kuijf. SPIE, 2024. http://dx.doi.org/10.1117/12.3034095.
Pełny tekst źródłaChen, Rongzhou, Shuo Zhu, Chutian Wang, and Edmund Y. Lam. "Spectrum synthesis with computational neuromorphic imaging." In Computational Optical Sensing and Imaging. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cm2b.3.
Pełny tekst źródłaRaporty organizacyjne na temat "Neuromorphic applications"
Pasupuleti, Murali Krishna. Neuromorphic Nanotech: 2D Materials for Energy-Efficient Edge Computing. National Education Services, 2025. https://doi.org/10.62311/nesx/rr325.
Pełny tekst źródłaDavis, Joel L. Neuromorphic Systems: From Biological Foundations to System Properties and Real World Applications. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada333498.
Pełny tekst źródłaSankaranarayanan, Subramanian, and Aldo Romero. Applications of Nickelate perovskites for neuromorphic computing from electronic structure and Machine Learning. Office of Scientific and Technical Information (OSTI), 2025. https://doi.org/10.2172/2531093.
Pełny tekst źródłaPasupuleti, Murali Krishna. Neural Computation and Learning Theory: Expressivity, Dynamics, and Biologically Inspired AI. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv425.
Pełny tekst źródłaPotok, Thomas, Catherine Schuman, Robert Patton, Todd Hylton, Hai Li, and Robinson Pino. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1341738.
Pełny tekst źródłaPasupuleti, Murali Krishna. Next-Generation Extended Reality (XR): A Unified Framework for Integrating AR, VR, and AI-driven Immersive Technologies. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv325.
Pełny tekst źródła