Artykuły w czasopismach na temat „Newtonian bubble”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Newtonian bubble”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Rosenbaum, Eilis, Mehrdad Massoudi, and Kaushik Dayal. "Surfactant stabilized bubbles flowing in a Newtonian fluid." Mathematics and Mechanics of Solids 24, no. 12 (2019): 3823–42. http://dx.doi.org/10.1177/1081286519854508.
Pełny tekst źródłaDe Kee and, D., C. F. Chan Man Fong, and J. Yao. "Bubble Shape in Non-Newtonian Fluids." Journal of Applied Mechanics 69, no. 5 (2002): 703–4. http://dx.doi.org/10.1115/1.1480822.
Pełny tekst źródłaKontaxi, Georgia, Yorgos G. Stergiou, and Aikaterini A. Mouza. "Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid." Micromachines 12, no. 1 (2021): 71. http://dx.doi.org/10.3390/mi12010071.
Pełny tekst źródłaKontaxi, Georgia, Yorgos G. Stergiou, and Aikaterini A. Mouza. "Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid." Micromachines 12, no. 1 (2021): 71. http://dx.doi.org/10.3390/mi12010071.
Pełny tekst źródłaLong, Li. "Simulation analysis of bubble coalescence behavior characteristics in Newtonian fluids based on the phase field method." Journal of Physics: Conference Series 2707, no. 1 (2024): 012123. http://dx.doi.org/10.1088/1742-6596/2707/1/012123.
Pełny tekst źródłaShan, Jie, and Xiaojun Zhou. "The Effect of Bubbles on Particle Migration in Non-Newtonian Fluids." Separations 8, no. 4 (2021): 36. http://dx.doi.org/10.3390/separations8040036.
Pełny tekst źródłaLong, Li. "Simulation analysis of bubble coalescence behavior characteristics in non-Newtonian fluids based on the phase field method." Journal of Physics: Conference Series 2707, no. 1 (2024): 012132. http://dx.doi.org/10.1088/1742-6596/2707/1/012132.
Pełny tekst źródłaAquino, Andrea, Davide Picchi, and Pietro Poesio. "Modeling the motion of a Taylor bubble in a microchannel through a shear-thinning fluid." E3S Web of Conferences 312 (2021): 05006. http://dx.doi.org/10.1051/e3sconf/202131205006.
Pełny tekst źródłaIslam, Md Tariqul, P. Ganesan, and Ji Cheng. "A pair of bubbles’ rising dynamics in a xanthan gum solution: a CFD study." RSC Advances 5, no. 11 (2015): 7819–31. http://dx.doi.org/10.1039/c4ra15728a.
Pełny tekst źródłaAlmani, Sikandar, Muhammad Raheel Bawani, Ubedullah Ansari, Masroor Abro, Mashad Hussain, and Ali Abbas. "Design and fabrication of an indigenous confined bubble column: Investigation of single bubble ascent." Mehran University Research Journal of Engineering and Technology 44, no. 2 (2025): 25–34. https://doi.org/10.22581/muet1982.0053.
Pełny tekst źródłaTruby, J. M., S. P. Mueller, E. W. Llewellin, and H. M. Mader. "The rheology of three-phase suspensions at low bubble capillary number." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2173 (2015): 20140557. http://dx.doi.org/10.1098/rspa.2014.0557.
Pełny tekst źródłaZhao, Xinxin, Xiangzhen Yan, Hongwei Jiang, et al. "Simulation Analysis of Gas Bubble Formation and Escape in Non-Newtonian Drilling Fluids." Geofluids 2021 (April 9, 2021): 1–14. http://dx.doi.org/10.1155/2021/6680653.
Pełny tekst źródłaFakhari, Ahmad, and Célio Fernandes. "Single-Bubble Rising in Shear-Thinning and Elastoviscoplastic Fluids Using a Geometric Volume of Fluid Algorithm." Polymers 15, no. 16 (2023): 3437. http://dx.doi.org/10.3390/polym15163437.
Pełny tekst źródłaMoreira, Ana I., Luís A. M. Rocha, João Carneiro, José D. P. Araújo, João B. L. M. Campos, and João M. Miranda. "Isolated Taylor Bubbles in Co-Current with Shear Thinning CMC Solutions in Microchannels—A Numerical Study." Processes 8, no. 2 (2020): 242. http://dx.doi.org/10.3390/pr8020242.
Pełny tekst źródłaHersey, Eric, Mauro Rodriguez, and Eric Johnsen. "Dynamics of an oscillating microbubble in a blood-like Carreau fluid." Journal of the Acoustical Society of America 153, no. 3 (2023): 1836–45. http://dx.doi.org/10.1121/10.0017342.
Pełny tekst źródłaPILLAPAKKAM, SHRIRAM B., PUSHPENDRA SINGH, DENIS BLACKMORE, and NADINE AUBRY. "Transient and steady state of a rising bubble in a viscoelastic fluid." Journal of Fluid Mechanics 589 (October 8, 2007): 215–52. http://dx.doi.org/10.1017/s0022112007007628.
Pełny tekst źródłaAraújo, J. D. P., J. M. Miranda, and J. B. L. M. Campos. "CFD Study of the Hydrodynamics of Slug Flow Systems: Interaction between Consecutive Taylor Bubbles." International Journal of Chemical Reactor Engineering 13, no. 4 (2015): 541–49. http://dx.doi.org/10.1515/ijcre-2014-0161.
Pełny tekst źródłaMitrou, Stamatina, Simona Migliozzi, Luca Mazzei, and Panagiota Angeli. "On the linear viscoelastic behavior of semidilute polydisperse bubble suspensions in Newtonian media." Journal of Rheology 68, no. 4 (2024): 539–52. http://dx.doi.org/10.1122/8.0000745.
Pełny tekst źródłaLiu, Yaxin, Eric R. Upchurch, and Evren M. Ozbayoglu. "Experimental Study of Single Taylor Bubble Rising in Stagnant and Downward Flowing Non-Newtonian Fluids in Inclined Pipes." Energies 14, no. 3 (2021): 578. http://dx.doi.org/10.3390/en14030578.
Pełny tekst źródłaBräuer, Felix, Elias Trautner, Josef Hasslberger, Paolo Cifani, and Markus Klein. "Turbulent Bubble-Laden Channel Flow of Power-Law Fluids: A Direct Numerical Simulation Study." Fluids 6, no. 1 (2021): 40. http://dx.doi.org/10.3390/fluids6010040.
Pełny tekst źródłaYoshida, Masanori, Hitoshi Igarashi, Kento Iwasaki, Sayaka Fuse, and Aya Togashi. "Evaluation of Viscosity of Non-Newtonian Liquid Foods with a Flow Tube Instrument." International Journal of Food Engineering 11, no. 6 (2015): 815–23. http://dx.doi.org/10.1515/ijfe-2015-0138.
Pełny tekst źródłaWang, Tao, Jian Hua Zhang, Yi Zhang, and Xiu Hua Ren. "Optimization of Bubble Amount in Resin Mineral Composite Based Vacuum Pouring Procedure." Applied Mechanics and Materials 395-396 (September 2013): 60–63. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.60.
Pełny tekst źródłaYao, Shun, Yichong Chen, Yijie Ling, Dongdong Hu, Zhenhao Xi, and Ling Zhao. "Analysis of Bubble Growth in Supercritical CO2 Extrusion Foaming Polyethylene Terephthalate Process Based on Dynamic Flow Simulation." Polymers 13, no. 16 (2021): 2799. http://dx.doi.org/10.3390/polym13162799.
Pełny tekst źródłaMitrou, Stamatina, Simona Migliozzi, Panagiota Angeli, and Luca Mazzei. "Effect of polydispersity and bubble clustering on the steady shear viscosity of semidilute bubble suspensions in Newtonian media." Journal of Rheology 67, no. 3 (2023): 635–46. http://dx.doi.org/10.1122/8.0000585.
Pełny tekst źródłaHariri, Amirhossein, Mohammad T. Shervani-Tabar, and Rezayat Parvizi. "Laser-Produced Cavitation Bubble Behavior in Newtonian and Non-Newtonian Liquid Inside a Rigid Cylinder: Numerical Study of Liquid Disc Microjet Impact Using OpenFOAM." Micromachines 14, no. 7 (2023): 1416. http://dx.doi.org/10.3390/mi14071416.
Pełny tekst źródłaJia, Zheng, Mingjun Pang, and Ruipeng Niu. "Numerical Investigation on Effect of Bubbles Arrangement and Volume Fraction on Apparent Viscosity of Bubbly Suspensions." Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering) 16, no. 4 (2023): 285–304. http://dx.doi.org/10.2174/0124055204268474230922054143.
Pełny tekst źródłaALEXANDROU, A. N., V. M. ENTOV, S. S. KOLGANOV, and N. V. KOLGANOVA. "On bubble rising in a Hele–Shaw cell filled with a non-Newtonian fluid." European Journal of Applied Mathematics 15, no. 3 (2004): 315–27. http://dx.doi.org/10.1017/s0956792504005509.
Pełny tekst źródłaVélez-Cordero, J. Rodrigo, Johanna Lantenet, Juan Hernández-Cordero, and Roberto Zenit. "Compact bubble clusters in Newtonian and non-Newtonian liquids." Physics of Fluids 26, no. 5 (2014): 053101. http://dx.doi.org/10.1063/1.4874630.
Pełny tekst źródłaFavelukis, Moshe, and Ramon J. Albalak. "Bubble growth in viscous newtonian and non-newtonian liquids." Chemical Engineering Journal and the Biochemical Engineering Journal 63, no. 3 (1996): 149–55. http://dx.doi.org/10.1016/s0923-0467(96)03119-3.
Pełny tekst źródłaJiang, Xiao F., Chunying Zhu, and Huai Z. Li. "Bubble pinch-off in Newtonian and non-Newtonian fluids." Chemical Engineering Science 170 (October 2017): 98–104. http://dx.doi.org/10.1016/j.ces.2016.12.057.
Pełny tekst źródłaFan, Wenyuan, and Xiaohong Yin. "Bubble formation in shear-thinning fluids: Laser image measurement and a novel correlation for detached volume." Chemical Industry and Chemical Engineering Quarterly 23, no. 3 (2017): 301–9. http://dx.doi.org/10.2298/ciceq151019045f.
Pełny tekst źródłaMorshed, Munzarin, Muhammad Saad Khan, Mohammad Azizur Rahman, and Syed Imtiaz. "Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow." Applied Sciences 10, no. 9 (2020): 3272. http://dx.doi.org/10.3390/app10093272.
Pełny tekst źródłaAllen, John, and Ronald A. Roy. "Bubble dynamics in non‐Newtonian fluids." Journal of the Acoustical Society of America 103, no. 5 (1998): 3013. http://dx.doi.org/10.1121/1.422486.
Pełny tekst źródłaMuljani, Srie, Heru Setyawan, and Reva Edra Nugraha. "Bubble formation phenomenon on the absorber column for CO2 absorption and to produce precipitated silica sodium carbonate." RSC Advances 13, no. 47 (2023): 33471–83. http://dx.doi.org/10.1039/d3ra05860c.
Pełny tekst źródłaShen, Zhongxiang, Ming Gao, Wuhan Dong, and Lixin Zhang. "Comparative experimental study on dynamic characteristics of bubble microlayers in small channel flow boiling and pool boiling." Journal of Physics: Conference Series 2280, no. 1 (2022): 012036. http://dx.doi.org/10.1088/1742-6596/2280/1/012036.
Pełny tekst źródłaShen, Zhongxiang, Ming Gao, Wuhan Dong, and Lixin Zhang. "Comparative experimental study on dynamic characteristics of bubble microlayers in small channel flow boiling and pool boiling." Journal of Physics: Conference Series 2280, no. 1 (2022): 012036. http://dx.doi.org/10.1088/1742-6596/2280/1/012036.
Pełny tekst źródłaLi, H. Z., Y. Mouline, L. Choplin, and N. Midoux. "Chaotic bubble coalescence in non-Newtonian fluids." International Journal of Multiphase Flow 23, no. 4 (1997): 713–23. http://dx.doi.org/10.1016/s0301-9322(97)00004-9.
Pełny tekst źródłaBrujan, Emil-Alexandru. "Cavitation bubble dynamics in non-Newtonian fluids." Polymer Engineering & Science 49, no. 3 (2008): 419–31. http://dx.doi.org/10.1002/pen.21292.
Pełny tekst źródłaRodrigue, Denis, Daniel De Kee, and C. F. Chan Man Fong. "Bubble drag in contaminated non-newtonian solutions." Canadian Journal of Chemical Engineering 75, no. 4 (1997): 794–96. http://dx.doi.org/10.1002/cjce.5450750418.
Pełny tekst źródłaChen, Zai Liang, and Tian Qi Huang. "Mathematical Model of Bubble Dissolution Process in Polymer Melt." Advanced Materials Research 154-155 (October 2010): 1251–54. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.1251.
Pełny tekst źródłaKawase, Y., and M. Moo-Young. "Liquid phase mixing in bubble columns with Newtonian and non-Newtonian fluids." Chemical Engineering Science 41, no. 8 (1986): 1969–77. http://dx.doi.org/10.1016/0009-2509(86)87113-5.
Pełny tekst źródłaFan, Wen Yuan, and Xiao Hong Yin. "Fractal Approach to Bubble Rising Dynamics in Non-Newtonian Fluids." Advanced Materials Research 889-890 (February 2014): 559–62. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.559.
Pełny tekst źródłaHAQUE, M. W., K. D. P. NIGAM, K. VISWANATHAN, and J. B. JOSHI. "STUDIES ON BUBBLE RISE VELOCITY IN BUBBLE COLUMNS EMPLOYING NON-NEWTONIAN SOLUTIONS." Chemical Engineering Communications 73, no. 1 (1988): 31–42. http://dx.doi.org/10.1080/00986448808940431.
Pełny tekst źródłaALEXANDROU, ANDREAS N., and VLADIMIR ENTOV. "On the steady-state advancement of fingers and bubbles in a Hele–Shaw cell filled by a non-Newtonian fluid." European Journal of Applied Mathematics 8, no. 1 (1997): 73–87. http://dx.doi.org/10.1017/s0956792596002963.
Pełny tekst źródłaTSAMOPOULOS, J., Y. DIMAKOPOULOS, N. CHATZIDAI, G. KARAPETSAS, and M. PAVLIDIS. "Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment." Journal of Fluid Mechanics 601 (April 25, 2008): 123–64. http://dx.doi.org/10.1017/s0022112008000517.
Pełny tekst źródłaClark, Nigel N., Rory L. C. Flemmer, and Jan W. Van Egmond. "Non-newtonian two-phase circulation in bubble columns." Canadian Journal of Chemical Engineering 67, no. 5 (1989): 862–65. http://dx.doi.org/10.1002/cjce.5450670520.
Pełny tekst źródłaFrank, Xavier, Huai Z. Li, Denis Funfschilling, Florence Burdin, and Youguang Ma. "Bubble Motion in Non-Newtonian Fluids and Suspensions." Canadian Journal of Chemical Engineering 81, no. 3-4 (2008): 483–90. http://dx.doi.org/10.1002/cjce.5450810321.
Pełny tekst źródłaKumar Jana, Sumit, and Sudip Kumar Das. "TAPERED BUBBLE COLUMN USING PSEUDOPLASTIC NON-NEWTONIAN LIQUIDS – EMPIRICAL CORRELATION FOR PRESSURE DROP." Chemistry & Chemical Technology 11, no. 3 (2017): 327–32. http://dx.doi.org/10.23939/chcht11.03.327.
Pełny tekst źródłaYamamoto, Takehiro, Takanori Suga, Kiyoji Nakamura, and Noriyasu Mori. "The Gas Penetration Through Viscoelastic Fluids With Shear-Thinning Viscosity in a Tube." Journal of Fluids Engineering 126, no. 2 (2004): 148–52. http://dx.doi.org/10.1115/1.1669402.
Pełny tekst źródłaKwak, Ho-Young. "Entropy Generation Due to the Heat Transfer for Evolving Spherical Objects." Entropy 20, no. 8 (2018): 562. http://dx.doi.org/10.3390/e20080562.
Pełny tekst źródła