Artykuły w czasopismach na temat „Nitrogen catabolite repression”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nitrogen catabolite repression”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cooper, T. G., R. Rai, and H. S. Yoo. "Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 12 (December 1989): 5440–44. http://dx.doi.org/10.1128/mcb.9.12.5440.
Pełny tekst źródłaCooper, T. G., R. Rai, and H. S. Yoo. "Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 12 (December 1989): 5440–44. http://dx.doi.org/10.1128/mcb.9.12.5440-5444.1989.
Pełny tekst źródłaScazzocchio, Claudio, Victoria Gavrias, Beatriz Cubero, Cristina Panozzo, Martine Mathieu, and Béatrice Felenbok. "Carbon catabolite repression in Aspergillus nidulans: a review." Canadian Journal of Botany 73, S1 (December 31, 1995): 160–66. http://dx.doi.org/10.1139/b95-240.
Pełny tekst źródłaHofman-Bang, Jacob. "Nitrogen Catabolite Repression in Saccharomyces cerevisiae." Molecular Biotechnology 12, no. 1 (1999): 35–74. http://dx.doi.org/10.1385/mb:12:1:35.
Pełny tekst źródłaArst Jr., Herbert N. "Nitrogen metabolite repression in Aspergillus nidulans: an historical perspective." Canadian Journal of Botany 73, S1 (December 31, 1995): 148–52. http://dx.doi.org/10.1139/b95-238.
Pełny tekst źródłaBELTRAN, G., M. NOVO, N. ROZES, A. MAS, and J. GUILLAMON. "Nitrogen catabolite repression in during wine fermentations." FEMS Yeast Research 4, no. 6 (March 2004): 625–32. http://dx.doi.org/10.1016/j.femsyr.2003.12.004.
Pełny tekst źródłaShin, Byung-Sik, Soo-Keun Choi, Issar Smith, and Seung-Hwan Park. "Analysis of tnrA Alleles Which Result in a Glucose-Resistant Sporulation Phenotype in Bacillus subtilis." Journal of Bacteriology 182, no. 17 (September 1, 2000): 5009–12. http://dx.doi.org/10.1128/jb.182.17.5009-5012.2000.
Pełny tekst źródłaMilhomem Cruz-Leite, Vanessa Rafaela, Silvia Maria Salem-Izacc, Evandro Novaes, Bruno Junior Neves, Wesley de Almeida Brito, Lana O'Hara Souza Silva, Juliano Domiraci Paccez, et al. "Nitrogen Catabolite Repression in members of Paracoccidioides complex." Microbial Pathogenesis 149 (December 2020): 104281. http://dx.doi.org/10.1016/j.micpath.2020.104281.
Pełny tekst źródłaPalavecino, Marcos D., Susana R. Correa-García, and Mariana Bermúdez-Moretti. "Genes of Different Catabolic Pathways Are Coordinately Regulated by Dal81 in Saccharomyces cerevisiae." Journal of Amino Acids 2015 (September 17, 2015): 1–8. http://dx.doi.org/10.1155/2015/484702.
Pełny tekst źródłaPinedo, Catalina Arango, and Daniel J. Gage. "HPrK Regulates Succinate-Mediated Catabolite Repression in the Gram-Negative Symbiont Sinorhizobium meliloti." Journal of Bacteriology 191, no. 1 (October 17, 2008): 298–309. http://dx.doi.org/10.1128/jb.01115-08.
Pełny tekst źródłaGolden, K. J., and R. W. Bernlohr. "Nitrogen catabolite repression of the L-asparaginase of Bacillus licheniformis." Journal of Bacteriology 164, no. 2 (1985): 938–40. http://dx.doi.org/10.1128/jb.164.2.938-940.1985.
Pełny tekst źródłaRai, Rajendra, Jennifer J. Tate, Isabelle Georis, Evelyne Dubois, and Terrance G. Cooper. "Constitutive and Nitrogen Catabolite Repression-sensitive Production of Gat1 Isoforms." Journal of Biological Chemistry 289, no. 5 (December 9, 2013): 2918–33. http://dx.doi.org/10.1074/jbc.m113.516740.
Pełny tekst źródłaNair, Abhinav, and Saurabh Jyoti Sarma. "The impact of carbon and nitrogen catabolite repression in microorganisms." Microbiological Research 251 (October 2021): 126831. http://dx.doi.org/10.1016/j.micres.2021.126831.
Pełny tekst źródłaLorca, Graciela L., Yong Joon Chung, Ravi D. Barabote, Walter Weyler, Christophe H. Schilling, and Milton H. Saier. "Catabolite Repression and Activation in Bacillus subtilis: Dependency on CcpA, HPr, and HprK." Journal of Bacteriology 187, no. 22 (November 15, 2005): 7826–39. http://dx.doi.org/10.1128/jb.187.22.7826-7839.2005.
Pełny tekst źródłaCunningham, T. S., and T. G. Cooper. "Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression." Molecular and Cellular Biology 11, no. 12 (December 1991): 6205–15. http://dx.doi.org/10.1128/mcb.11.12.6205.
Pełny tekst źródłaCunningham, T. S., and T. G. Cooper. "Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression." Molecular and Cellular Biology 11, no. 12 (December 1991): 6205–15. http://dx.doi.org/10.1128/mcb.11.12.6205-6215.1991.
Pełny tekst źródłaWarner, Jessica B., and Juke S. Lolkema. "CcpA-Dependent Carbon Catabolite Repression in Bacteria." Microbiology and Molecular Biology Reviews 67, no. 4 (December 2003): 475–90. http://dx.doi.org/10.1128/mmbr.67.4.475-490.2003.
Pełny tekst źródłaBringhurst, Ryan M., and Daniel J. Gage. "Control of Inducer Accumulation Plays a Key Role in Succinate-Mediated Catabolite Repression in Sinorhizobiummeliloti." Journal of Bacteriology 184, no. 19 (October 1, 2002): 5385–92. http://dx.doi.org/10.1128/jb.184.19.5385-5392.2002.
Pełny tekst źródłater Schure, Eelko G., Natal A. W. van Riel, and C. Theo Verrips. "The role of ammonia metabolism in nitrogen catabolite repression inSaccharomyces cerevisiae." FEMS Microbiology Reviews 24, no. 1 (January 2000): 67–83. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00533.x.
Pełny tekst źródłaBoczko, E. M., T. G. Cooper, T. Gedeon, K. Mischaikow, D. G. Murdock, S. Pratap, and K. S. Wells. "Structure theorems and the dynamics of nitrogen catabolite repression in yeast." Proceedings of the National Academy of Sciences 102, no. 16 (April 6, 2005): 5647–52. http://dx.doi.org/10.1073/pnas.0501339102.
Pełny tekst źródłaSosa, Eduardo, Cristina Aranda, Lina Riego, Lourdes Valenzuela, Alexander DeLuna, José M. Cantú, and Alicia González. "Gcn4 negatively regulates expression of genes subjected to nitrogen catabolite repression." Biochemical and Biophysical Research Communications 310, no. 4 (October 2003): 1175–80. http://dx.doi.org/10.1016/j.bbrc.2003.09.144.
Pełny tekst źródłaRai, Rajendra, Jennifer J. Tate, David R. Nelson, and Terrance G. Cooper. "gln3Mutations Dissociate Responses to Nitrogen Limitation (Nitrogen Catabolite Repression) and Rapamycin Inhibition of TorC1." Journal of Biological Chemistry 288, no. 4 (December 5, 2012): 2789–804. http://dx.doi.org/10.1074/jbc.m112.421826.
Pełny tekst źródłaChoi, Soo-Keun, and Milton H. Saier. "Regulation of sigL Expression by the Catabolite Control Protein CcpA Involves a Roadblock Mechanism in Bacillus subtilis: Potential Connection between Carbon and Nitrogen Metabolism." Journal of Bacteriology 187, no. 19 (October 1, 2005): 6856–61. http://dx.doi.org/10.1128/jb.187.19.6856-6861.2005.
Pełny tekst źródłaMarzluf, G. A. "Genetic regulation of nitrogen metabolism in the fungi." Microbiology and Molecular Biology Reviews 61, no. 1 (March 1997): 17–32. http://dx.doi.org/10.1128/mmbr.61.1.17-32.1997.
Pełny tekst źródłaZHANG, Weiping, Xinrui ZHAO, Guocheng DU, Huijun ZOU, Jianwei FU, Jingwen ZHOU, and Jian CHEN. "Nitrogen Catabolite Repression inSaccharomyces cerevisiaeand Its Effect on Safety of Fermented Foods." Chinese Journal of Appplied Environmental Biology 18, no. 5 (2012): 862. http://dx.doi.org/10.3724/sp.j.1145.2012.00862.
Pełny tekst źródłater Schure, E. "The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae." FEMS Microbiology Reviews 24, no. 1 (January 2000): 67–83. http://dx.doi.org/10.1016/s0168-6445(99)00030-3.
Pełny tekst źródłaHuberman, Lori B., Vincent W. Wu, David J. Kowbel, Juna Lee, Chris Daum, Igor V. Grigoriev, Ronan C. O’Malley, and N. Louise Glass. "DNA affinity purification sequencing and transcriptional profiling reveal new aspects of nitrogen regulation in a filamentous fungus." Proceedings of the National Academy of Sciences 118, no. 13 (March 22, 2021): e2009501118. http://dx.doi.org/10.1073/pnas.2009501118.
Pełny tekst źródłaCoffman, J. A., R. Rai, T. Cunningham, V. Svetlov, and T. G. Cooper. "Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae." Molecular and Cellular Biology 16, no. 3 (March 1996): 847–58. http://dx.doi.org/10.1128/mcb.16.3.847.
Pełny tekst źródłaCajueiro, Danielli Batista Bezerra, Denise Castro Parente, Fernanda Cristina Bezerra Leite, Marcos Antonio de Morais Junior, and Will de Barros Pita. "Glutamine: a major player in nitrogen catabolite repression in the yeast Dekkera bruxellensis." Antonie van Leeuwenhoek 110, no. 9 (June 19, 2017): 1157–68. http://dx.doi.org/10.1007/s10482-017-0888-5.
Pełny tekst źródłaFerrer-Pinós, Aroa, Víctor Garrigós, Emilia Matallana, and Agustín Aranda. "Mechanisms of Metabolic Adaptation in Wine Yeasts: Role of Gln3 Transcription Factor." Fermentation 7, no. 3 (September 5, 2021): 181. http://dx.doi.org/10.3390/fermentation7030181.
Pełny tekst źródłaGeoris, Isabelle, André Feller, Fabienne Vierendeels, and Evelyne Dubois. "The Yeast GATA Factor Gat1 Occupies a Central Position in Nitrogen Catabolite Repression-Sensitive Gene Activation." Molecular and Cellular Biology 29, no. 13 (April 20, 2009): 3803–15. http://dx.doi.org/10.1128/mcb.00399-09.
Pełny tekst źródłaDaugherty, J. R., R. Rai, H. M. el Berry, and T. G. Cooper. "Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae." Journal of Bacteriology 175, no. 1 (1993): 64–73. http://dx.doi.org/10.1128/jb.175.1.64-73.1993.
Pełny tekst źródłaZomer, Aldert L., Girbe Buist, Rasmus Larsen, Jan Kok, and Oscar P. Kuipers. "Time-Resolved Determination of the CcpA Regulon of Lactococcus lactis subsp. cremoris MG1363." Journal of Bacteriology 189, no. 4 (October 6, 2006): 1366–81. http://dx.doi.org/10.1128/jb.01013-06.
Pełny tekst źródłaCoffman, Jonathan A., Rajendra Rai, and Terrance G. Cooper. "Genetic Evidence for Gln3p-Independent, Nitrogen Catabolite Repression-Sensitive Gene Expression in Saccharomyces cerevisiae." jb 178, no. 7 (1996): 2159. http://dx.doi.org/10.1128/.178.7.2159-2159.1996.
Pełny tekst źródłaCoffman, J. A., R. Rai, and T. G. Cooper. "Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae." Journal of bacteriology 177, no. 23 (1995): 6910–18. http://dx.doi.org/10.1128/jb.177.23.6910-6918.1995.
Pełny tekst źródłaCoffman, Jonathan A., Rajendra Rai, and Terrance G. Cooper. "Genetic Evidence for Gln3p-Independent, Nitrogen Catabolite Repression-Sensitive Gene Expression in Saccharomyces cerevisiae." Journal of Bacteriology 178, no. 7 (April 1996): 2159.2–2159. http://dx.doi.org/10.1128/jb.178.7.2159a.1996.
Pełny tekst źródłaZhao, Xinrui, Huijun Zou, Guocheng Du, Jian Chen, and Jingwen Zhou. "Effects of nitrogen catabolite repression-related amino acids on the flavour of rice wine." Journal of the Institute of Brewing 121, no. 4 (September 16, 2015): 581–88. http://dx.doi.org/10.1002/jib.269.
Pełny tekst źródłaFayyad-Kazan, Mohammad, A. Feller, E. Bodo, M. Boeckstaens, A. M. Marini, E. Dubois, and I. Georis. "Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs." Molecular Microbiology 99, no. 2 (November 13, 2015): 360–79. http://dx.doi.org/10.1111/mmi.13236.
Pełny tekst źródłaSmart, W. C., J. A. Coffman, and T. G. Cooper. "Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (arginase) promoter in response to multiple environmental signals." Molecular and Cellular Biology 16, no. 10 (October 1996): 5876–87. http://dx.doi.org/10.1128/mcb.16.10.5876.
Pełny tekst źródłaPark, Heui-Dong, Stephanie Scott, Rajendra Rai, Rosemary Dorrington, and Terrance G. Cooper. "Synergistic Operation of the CAR2(Ornithine Transaminase) Promoter Elements in Saccharomyces cerevisiae." Journal of Bacteriology 181, no. 22 (November 15, 1999): 7052–64. http://dx.doi.org/10.1128/jb.181.22.7052-7064.1999.
Pełny tekst źródłaBeeser, Alexander E., and Terrance G. Cooper. "Control of Nitrogen Catabolite Repression Is Not Affected by the tRNAGln-CUU Mutation, Which Results in Constitutive Pseudohyphal Growth of Saccharomyces cerevisiae." Journal of Bacteriology 181, no. 8 (April 15, 1999): 2472–76. http://dx.doi.org/10.1128/jb.181.8.2472-2476.1999.
Pełny tekst źródłaSalmon, Jean-Michel, and Pierre Barre. "Improvement of Nitrogen Assimilation and Fermentation Kinetics under Enological Conditions by Derepression of Alternative Nitrogen-Assimilatory Pathways in an Industrial Saccharomyces cerevisiae Strain." Applied and Environmental Microbiology 64, no. 10 (October 1, 1998): 3831–37. http://dx.doi.org/10.1128/aem.64.10.3831-3837.1998.
Pełny tekst źródłaGodard, Patrice, Antonio Urrestarazu, Stéphan Vissers, Kevin Kontos, Gianluca Bontempi, Jacques van Helden, and Bruno André. "Effect of 21 Different Nitrogen Sources on Global Gene Expression in the Yeast Saccharomyces cerevisiae." Molecular and Cellular Biology 27, no. 8 (February 16, 2007): 3065–86. http://dx.doi.org/10.1128/mcb.01084-06.
Pełny tekst źródłaZalieckas, Jill M., Lewis V. Wray, and Susan H. Fisher. "trans-Acting Factors Affecting Carbon Catabolite Repression of the hut Operon inBacillus subtilis." Journal of Bacteriology 181, no. 9 (May 1, 1999): 2883–88. http://dx.doi.org/10.1128/jb.181.9.2883-2888.1999.
Pełny tekst źródłaRai, Rajendra, Jennifer J. Tate, Karthik Shanmuganatham, Martha M. Howe, David Nelson, and Terrance G. Cooper. "Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine." Genetics 201, no. 3 (September 2, 2015): 989–1016. http://dx.doi.org/10.1534/genetics.115.177725.
Pełny tekst źródłaCooper, T. G., L. Kovari, R. A. Sumrada, H. D. Park, R. M. Luche, and I. Kovari. "Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion." Journal of Bacteriology 174, no. 1 (1992): 48–55. http://dx.doi.org/10.1128/jb.174.1.48-55.1992.
Pełny tekst źródłaDawson, M. W., I. S. Maddox, and J. D. Brooks. "Evidence for nitrogen catabolite repression during citric acid production byAspergillus niger under phosphate-limited growth conditions." Biotechnology and Bioengineering 33, no. 11 (May 1989): 1500–1504. http://dx.doi.org/10.1002/bit.260331119.
Pełny tekst źródłaCunningham, Thomas S., Roopa Andhare, and Terrance G. Cooper. "Nitrogen Catabolite Repression ofDAL80Expression Depends on the Relative Levels of Gat1p and Ure2p Production inSaccharomyces cerevisiae." Journal of Biological Chemistry 275, no. 19 (May 5, 2000): 14408–14. http://dx.doi.org/10.1074/jbc.275.19.14408.
Pełny tekst źródłaTate, Jennifer J., Isabelle Georis, Evelyne Dubois, and Terrance G. Cooper. "Distinct Phosphatase Requirements and GATA Factor Responses to Nitrogen Catabolite Repression and Rapamycin Treatment inSaccharomyces cerevisiae." Journal of Biological Chemistry 285, no. 23 (April 8, 2010): 17880–95. http://dx.doi.org/10.1074/jbc.m109.085712.
Pełny tekst źródłaAiroldi, Edoardo M., Darach Miller, Rodoniki Athanasiadou, Nathan Brandt, Farah Abdul-Rahman, Benjamin Neymotin, Tatsu Hashimoto, Tayebeh Bahmani, and David Gresham. "Steady-state and dynamic gene expression programs inSaccharomyces cerevisiaein response to variation in environmental nitrogen." Molecular Biology of the Cell 27, no. 8 (April 15, 2016): 1383–96. http://dx.doi.org/10.1091/mbc.e14-05-1013.
Pełny tekst źródła