Artykuły w czasopismach na temat „Non-identically distributed data”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Non-identically distributed data”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
A AlSaiary, Zakeia. "Analyzing Order Statistics of Non-Identically Distributed Shifted Exponential Variables in Numerical Data". International Journal of Science and Research (IJSR) 13, nr 11 (5.11.2024): 1264–70. http://dx.doi.org/10.21275/sr241116231011.
Pełny tekst źródłaTiurev, Konstantin, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert i Jan-Michael Reiner. "Correcting non-independent and non-identically distributed errors with surface codes". Quantum 7 (26.09.2023): 1123. http://dx.doi.org/10.22331/q-2023-09-26-1123.
Pełny tekst źródłaZhu, Feng, Jiangshan Hao, Zhong Chen, Yanchao Zhao, Bing Chen i Xiaoyang Tan. "STAFL: Staleness-Tolerant Asynchronous Federated Learning on Non-iid Dataset". Electronics 11, nr 3 (20.01.2022): 314. http://dx.doi.org/10.3390/electronics11030314.
Pełny tekst źródłaWu, Jikun, JiaHao Yu i YuJun Zheng. "Research on Federated Learning Algorithms in Non-Independent Identically Distributed Scenarios". Highlights in Science, Engineering and Technology 85 (13.03.2024): 104–12. http://dx.doi.org/10.54097/7newsv97.
Pełny tekst źródłaJiang, Yingrui, Xuejian Zhao, Hao Li i Yu Xue. "A Personalized Federated Learning Method Based on Knowledge Distillation and Differential Privacy". Electronics 13, nr 17 (6.09.2024): 3538. http://dx.doi.org/10.3390/electronics13173538.
Pełny tekst źródłaBabar, Muhammad, Basit Qureshi i Anis Koubaa. "Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging". PLOS ONE 19, nr 5 (15.05.2024): e0302539. http://dx.doi.org/10.1371/journal.pone.0302539.
Pełny tekst źródłaLayne, Elliot, Erika N. Dort, Richard Hamelin, Yue Li i Mathieu Blanchette. "Supervised learning on phylogenetically distributed data". Bioinformatics 36, Supplement_2 (grudzień 2020): i895—i902. http://dx.doi.org/10.1093/bioinformatics/btaa842.
Pełny tekst źródłaShahrivari, Farzad, i Nikola Zlatanov. "On Supervised Classification of Feature Vectors with Independent and Non-Identically Distributed Elements". Entropy 23, nr 8 (13.08.2021): 1045. http://dx.doi.org/10.3390/e23081045.
Pełny tekst źródłaLv, Yankai, Haiyan Ding, Hao Wu, Yiji Zhao i Lei Zhang. "FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing". Applied Sciences 13, nr 23 (4.12.2023): 12962. http://dx.doi.org/10.3390/app132312962.
Pełny tekst źródłaZhang, Xufei, i Yiqing Shen. "Non-IID federated learning with Mixed-Data Calibration". Applied and Computational Engineering 45, nr 1 (15.03.2024): 168–78. http://dx.doi.org/10.54254/2755-2721/45/20241048.
Pełny tekst źródłaAlotaibi, Basmah, Fakhri Alam Khan i Sajjad Mahmood. "Communication Efficiency and Non-Independent and Identically Distributed Data Challenge in Federated Learning: A Systematic Mapping Study". Applied Sciences 14, nr 7 (24.03.2024): 2720. http://dx.doi.org/10.3390/app14072720.
Pełny tekst źródłaWang, Zhao, Yifan Hu, Shiyang Yan, Zhihao Wang, Ruijie Hou i Chao Wu. "Efficient Ring-Topology Decentralized Federated Learning with Deep Generative Models for Medical Data in eHealthcare Systems". Electronics 11, nr 10 (12.05.2022): 1548. http://dx.doi.org/10.3390/electronics11101548.
Pełny tekst źródłaAggarwal, Meenakshi, Vikas Khullar, Nitin Goyal, Abdullah Alammari, Marwan Ali Albahar i Aman Singh. "Lightweight Federated Learning for Rice Leaf Disease Classification Using Non Independent and Identically Distributed Images". Sustainability 15, nr 16 (9.08.2023): 12149. http://dx.doi.org/10.3390/su151612149.
Pełny tekst źródłaNiang, Aladji Babacar, Gane Samb Lo, Cherif Mamadou Traoré i Amadou Ball. "\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences". Afrika Statistika 17, nr 1 (1.01.2022): 3125–43. http://dx.doi.org/10.16929/as/2022.3125.198.
Pełny tekst źródłaNiang, Aladji Babacar, Gane Samb Lo, Cherif Mamadou Moctar Traoré i Amadou Ball. "\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences". Afrika Statistika 17, nr 1 (1.01.2022): 3125–43. http://dx.doi.org/10.16929/as/3125.3115.198.
Pełny tekst źródłaWu, Xia, Lei Xu i Liehuang Zhu. "Local Differential Privacy-Based Federated Learning under Personalized Settings". Applied Sciences 13, nr 7 (24.03.2023): 4168. http://dx.doi.org/10.3390/app13074168.
Pełny tekst źródłaBejenar, Iuliana, Lavinia Ferariu, Carlos Pascal i Constantin-Florin Caruntu. "Aggregation Methods Based on Quality Model Assessment for Federated Learning Applications: Overview and Comparative Analysis". Mathematics 11, nr 22 (10.11.2023): 4610. http://dx.doi.org/10.3390/math11224610.
Pełny tekst źródłaTayyeh, Huda Kadhim, i Ahmed Sabah Ahmed AL-Jumaili. "Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning". Computers 13, nr 11 (24.10.2024): 277. http://dx.doi.org/10.3390/computers13110277.
Pełny tekst źródłaLiu, Ying, Zhiqiang Wang, Shufang Pang i Lei Ju. "Distributed Malicious Traffic Detection". Electronics 13, nr 23 (28.11.2024): 4720. http://dx.doi.org/10.3390/electronics13234720.
Pełny tekst źródłaLeroy, Fanny, Jean-Yves Dauxois i Pascale Tubert-Bitter. "On the Parametric Maximum Likelihood Estimator for Independent but Non-identically Distributed Observations with Application to Truncated Data". Journal of Statistical Theory and Applications 15, nr 1 (2016): 96. http://dx.doi.org/10.2991/jsta.2016.15.1.8.
Pełny tekst źródłaDIB, ABDESSAMAD, MOHAMED MEHDI HAMRI i ABBES RABHI. "ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA". Journal of Science and Arts 22, nr 4 (30.12.2022): 845–64. http://dx.doi.org/10.46939/j.sci.arts-22.4-a07.
Pełny tekst źródłaJahani, Khalil, Behzad Moshiri i Babak Hossein Khalaj. "A Survey on Data Distribution Challenges and Solutions in Vertical and Horizontal Federated Learning". Journal of Artificial Intelligence, Applications, and Innovations 1, nr 2 (2024): 55–71. https://doi.org/10.61838/jaiai.1.2.5.
Pełny tekst źródłaZhang, Jianfei, i Zhongxin Li. "A Clustered Federated Learning Method of User Behavior Analysis Based on Non-IID Data". Electronics 12, nr 7 (31.03.2023): 1660. http://dx.doi.org/10.3390/electronics12071660.
Pełny tekst źródłaChen, Runzi, Shuliang Zhao i Zhenzhen Tian. "A Multiscale Clustering Approach for Non-IID Nominal Data". Computational Intelligence and Neuroscience 2021 (11.10.2021): 1–10. http://dx.doi.org/10.1155/2021/8993543.
Pełny tekst źródłaYan, Jiaxing, Yan Li, Sifan Yin, Xin Kang, Jiachen Wang, Hao Zhang i Bin Hu. "An Efficient Greedy Hierarchical Federated Learning Training Method Based on Trusted Execution Environments". Electronics 13, nr 17 (6.09.2024): 3548. http://dx.doi.org/10.3390/electronics13173548.
Pełny tekst źródłaGao, Huiguo, Mengyuan Lee, Guanding Yu i Zhaolin Zhou. "A Graph Neural Network Based Decentralized Learning Scheme". Sensors 22, nr 3 (28.01.2022): 1030. http://dx.doi.org/10.3390/s22031030.
Pełny tekst źródłaZhou, Yuwen, Yuhan Hu, Jing Sun, Rui He i Wenjie Kang. "A Semi-Federated Active Learning Framework for Unlabeled Online Network Data". Mathematics 11, nr 8 (21.04.2023): 1972. http://dx.doi.org/10.3390/math11081972.
Pełny tekst źródłaWang, Jinru, Zijuan Geng i Fengfeng Jin. "Optimal Wavelet Estimation of Density Derivatives for Size-Biased Data". Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/512634.
Pełny tekst źródłaEfthymiadis, Filippos, Aristeidis Karras, Christos Karras i Spyros Sioutas. "Advanced Optimization Techniques for Federated Learning on Non-IID Data". Future Internet 16, nr 10 (13.10.2024): 370. http://dx.doi.org/10.3390/fi16100370.
Pełny tekst źródłaSeol, Mihye, i Taejoon Kim. "Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data". Sensors 23, nr 3 (19.01.2023): 1152. http://dx.doi.org/10.3390/s23031152.
Pełny tekst źródłaLee, Suchul. "Distributed Detection of Malicious Android Apps While Preserving Privacy Using Federated Learning". Sensors 23, nr 4 (15.02.2023): 2198. http://dx.doi.org/10.3390/s23042198.
Pełny tekst źródłaZhao, Puning, Fei Yu i Zhiguo Wan. "A Huber Loss Minimization Approach to Byzantine Robust Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 19 (24.03.2024): 21806–14. http://dx.doi.org/10.1609/aaai.v38i19.30181.
Pełny tekst źródłaValente Neto, Ernesto, Solon Peixoto i Júlio César Anjos. "EnBaSe: Enhancing Image Classification in IoT Scenarios through Entropy-Based Selection of Non-IID Data". Learning and Nonlinear Models 23, nr 1 (28.02.2025): 49–66. https://doi.org/10.21528/lnlm-vol23-no1-art4.
Pełny tekst źródłaFirdaus, Muhammad, Siwan Noh, Zhuohao Qian, Harashta Tatimma Larasati i Kyung-Hyune Rhee. "Personalized federated learning for heterogeneous data: A distributed edge clustering approach". Mathematical Biosciences and Engineering 20, nr 6 (2023): 10725–40. http://dx.doi.org/10.3934/mbe.2023475.
Pełny tekst źródłaChu, Patrick K. K. "Study on the Non-Random and Chaotic Behavior of Chinese Equities Market". Review of Pacific Basin Financial Markets and Policies 06, nr 02 (czerwiec 2003): 199–222. http://dx.doi.org/10.1142/s0219091503001055.
Pełny tekst źródłaKnight, John L., i Stephen E. Satchell. "The Cumulant Generating Function Estimation Method". Econometric Theory 13, nr 2 (kwiecień 1997): 170–84. http://dx.doi.org/10.1017/s0266466600005715.
Pełny tekst źródłaGao, Yuan. "Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set". Applied and Computational Engineering 86, nr 1 (31.07.2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Pełny tekst źródłaChoi, Jai Won, Balgobin Nandram i Boseung Choi. "Combining Correlated P-values From Primary Data Analyses". International Journal of Statistics and Probability 11, nr 6 (20.10.2022): 12. http://dx.doi.org/10.5539/ijsp.v11n6p12.
Pełny tekst źródłaTan, Qingjie, Bin Wang, Hongfeng Yu, Shuhui Wu, Yaguan Qian i Yuanhong Tao. "DP-FEDAW: FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY IN NON-IID DATA". International Journal of Engineering Technologies and Management Research 10, nr 5 (20.05.2023): 34–49. http://dx.doi.org/10.29121/ijetmr.v10.i5.2023.1328.
Pełny tekst źródłaShan, Ang, i Fengkai Yang. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm". Mathematics 9, nr 6 (10.03.2021): 590. http://dx.doi.org/10.3390/math9060590.
Pełny tekst źródłaAgrawal, Shaashwat, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu i Quoc-Viet Pham. "Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning". Computational Intelligence and Neuroscience 2021 (18.11.2021): 1–10. http://dx.doi.org/10.1155/2021/7156420.
Pełny tekst źródłaZhang, You, Jin Wang, Liang-Chih Yu, Dan Xu i Xuejie Zhang. "Multi-Attribute Multi-Grained Adaptation of Pre-Trained Language Models for Text Understanding from Bayesian Perspective". Proceedings of the AAAI Conference on Artificial Intelligence 39, nr 24 (11.04.2025): 25967–75. https://doi.org/10.1609/aaai.v39i24.34791.
Pełny tekst źródłaZhang, Kainan, Zhipeng Cai i Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data". Wireless Communications and Mobile Computing 2023 (3.02.2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Pełny tekst źródłaHu, Cheng, Scarlett Chen i Zhe Wu. "Economic Model Predictive Control of Nonlinear Systems Using Online Learning of Neural Networks". Processes 11, nr 2 (20.01.2023): 342. http://dx.doi.org/10.3390/pr11020342.
Pełny tekst źródłaZhou, Yueying, Gaoxiang Duan, Tianchen Qiu, Lin Zhang, Li Tian, Xiaoying Zheng i Yongxin Zhu. "Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge". Electronics 13, nr 9 (1.05.2024): 1738. http://dx.doi.org/10.3390/electronics13091738.
Pełny tekst źródłaZhao, Bo, Peng Sun, Tao Wang i Keyu Jiang. "FedInv: Byzantine-Robust Federated Learning by Inversing Local Model Updates". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 8 (28.06.2022): 9171–79. http://dx.doi.org/10.1609/aaai.v36i8.20903.
Pełny tekst źródłaYang, Dezhi, Xintong He, Jun Wang, Guoxian Yu, Carlotta Domeniconi i Jinglin Zhang. "Federated Causality Learning with Explainable Adaptive Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 15 (24.03.2024): 16308–15. http://dx.doi.org/10.1609/aaai.v38i15.29566.
Pełny tekst źródłaTursunboev, Jamshid, Yong-Sung Kang, Sung-Bum Huh, Dong-Woo Lim, Jae-Mo Kang i Heechul Jung. "Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks". Applied Sciences 12, nr 2 (11.01.2022): 670. http://dx.doi.org/10.3390/app12020670.
Pełny tekst źródłaLee, Yi-Chen, Wei-Che Chien i Yao-Chung Chang. "FedDB: A Federated Learning Approach Using DBSCAN for DDoS Attack Detection". Applied Sciences 14, nr 22 (7.11.2024): 10236. http://dx.doi.org/10.3390/app142210236.
Pełny tekst źródłaSharma, Shagun, Kalpna Guleria, Ayush Dogra, Deepali Gupta, Sapna Juneja, Swati Kumari i Ali Nauman. "A privacy-preserved horizontal federated learning for malignant glioma tumour detection using distributed data-silos". PLOS ONE 20, nr 2 (11.02.2025): e0316543. https://doi.org/10.1371/journal.pone.0316543.
Pełny tekst źródła