Artykuły w czasopismach na temat „Non oxyde ceramic”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Non oxyde ceramic”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Martinelli, Antonio E., Rubens M. Nascimento, Tarcisio E. de Andrade, et al. "Wetting Oxide and Non-Oxide Ceramics with Active Metals." Materials Science Forum 730-732 (November 2012): 164–69. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.164.
Pełny tekst źródłaGao, Xiong, Jingyi Chen, Xiaotong Chen, Wenqing Wang, Zengchan Li, and Rujie He. "How to Improve the Curing Ability during the Vat Photopolymerization 3D Printing of Non-Oxide Ceramics: A Review." Materials 17, no. 11 (2024): 2626. http://dx.doi.org/10.3390/ma17112626.
Pełny tekst źródłaKusunose, Takafumi, and Tohru Sekino. "Non-Oxide Ceramic Nanocomposites with Multifunctionality." Key Engineering Materials 403 (December 2008): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.403.45.
Pełny tekst źródłaKaradimas, George, and Konstantinos Salonitis. "Ceramic Matrix Composites for Aero Engine Applications—A Review." Applied Sciences 13, no. 5 (2023): 3017. http://dx.doi.org/10.3390/app13053017.
Pełny tekst źródłaBöttcher, Maike, Daisy Nestler, Jonas Stiller, and Lothar Kroll. "Injection Moulding of Oxide Ceramic Matrix Composites: Comparing Two Feedstocks." Key Engineering Materials 809 (June 2019): 140–47. http://dx.doi.org/10.4028/www.scientific.net/kem.809.140.
Pełny tekst źródłaMitomo, Mamoru, and Günter Petzow. "Recent Progress in Silicon Nitride and Silicon Carbide Ceramics." MRS Bulletin 20, no. 2 (1995): 19–22. http://dx.doi.org/10.1557/s0883769400049162.
Pełny tekst źródłaWang, Ruzhuan, Dingyu Li, and Weiguo Li. "Temperature dependence of hardness prediction for high-temperature structural ceramics and their composites." Nanotechnology Reviews 10, no. 1 (2021): 586–95. http://dx.doi.org/10.1515/ntrev-2021-0041.
Pełny tekst źródłaSilvestre, J., N. Silvestre, and J. de Brito. "An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites." Journal of Nanomaterials 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/106494.
Pełny tekst źródłaGalusek, D., Z. Lencés, P. Sajgalík, and Ralf Riedel. "Thermal analysis study of polymer-to-ceramic conversion of organosilicon precursors." Journal of Mining and Metallurgy, Section B: Metallurgy 44, no. 1 (2008): 35–38. http://dx.doi.org/10.2298/jmmb0801035g.
Pełny tekst źródłaBao, X. Y., Song Li, Xiao Xia Tang, and Yue Zhang. "Synthesis of Si-N-C Ceramic Composites by Pyrolysis of Polysilazane and Polycarbosilane." Key Engineering Materials 512-515 (June 2012): 306–9. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.306.
Pełny tekst źródłaGogotsi, Yury G., and Masahiro Yoshimura. "Water Effects on Corrosion Behavior of Structural Ceramics." MRS Bulletin 19, no. 10 (1994): 39–45. http://dx.doi.org/10.1557/s0883769400048211.
Pełny tekst źródłaTressler, Richard E. "High-Temperature Stability of Non-Oxide Structural Ceramics." MRS Bulletin 18, no. 9 (1993): 58–63. http://dx.doi.org/10.1557/s0883769400038045.
Pełny tekst źródłaHwang, Chuan Chou, Chen Chia Chou, Jyh Liang Wang, Tsang Yen Hsieh, and Jui Te Tseng. "The Lithium Doping Effect on (Na0.5K0.5)NbO3 Lead-Free Piezo-Ceramics Structure Stability and Ferroelectric Characteristics." Applied Mechanics and Materials 217-219 (November 2012): 682–85. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.682.
Pełny tekst źródłaLi, Xingbang, Jingxian Zhang, Yusen Duan, et al. "Rheology and Curability Characterization of Photosensitive Slurries for 3D Printing of Si3N4 Ceramics." Applied Sciences 10, no. 18 (2020): 6438. http://dx.doi.org/10.3390/app10186438.
Pełny tekst źródłaPaione, Consiglio M., and Francesco Baino. "Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis." Ceramics 6, no. 2 (2023): 994–1016. http://dx.doi.org/10.3390/ceramics6020059.
Pełny tekst źródłaKodentsov, Alexander. "Diffusion-Limited Reactions of Non-Oxide Ceramics with Transition Metals." Diffusion Foundations 21 (March 2019): 85–126. http://dx.doi.org/10.4028/www.scientific.net/df.21.85.
Pełny tekst źródłaMiller, P. R., R. H. J. Hannink, and B. C. Muddle. "Quantitative Microanalysis of ZrO2/Non-Oxide Ceramic Composites." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 2 (1990): 438–39. http://dx.doi.org/10.1017/s0424820100135794.
Pełny tekst źródłaEgelja, A., J. Gulicovski, A. Devecerski, M. Ninic, A. Radosavljevic-Mihajlovic, and B. Matovic. "Preparation of biomorphic SiC ceramics." Science of Sintering 40, no. 2 (2008): 141–45. http://dx.doi.org/10.2298/sos0802141e.
Pełny tekst źródłaSarraf, Fateme, Sergey V. Churakov, and Frank Clemens. "Preceramic Polymers for Additive Manufacturing of Silicate Ceramics." Polymers 15, no. 22 (2023): 4360. http://dx.doi.org/10.3390/polym15224360.
Pełny tekst źródłaShowket, Hussain Dar, and Arashdeep Singh Er. "Microhardness of Silicon Nitride Ceramic and Its Composites." International Journal of Trend in Scientific Research and Development 4, no. 1 (2019): 660–64. https://doi.org/10.5281/zenodo.3606152.
Pełny tekst źródłaEl Chawich, Ghenwa, Joelle El Hayek, Vincent Rouessac, et al. "Design and Manufacturing of Si-Based Non-Oxide Cellular Ceramic Structures through Indirect 3D Printing." Materials 15, no. 2 (2022): 471. http://dx.doi.org/10.3390/ma15020471.
Pełny tekst źródłaJothi, Sudagar, Sujith Ravindran, and Ravi Kumar. "Corrosion of Polymer-Derived Ceramics in Hydrofluoric Acid and Sodium Salts." Advances in Science and Technology 89 (October 2014): 82–87. http://dx.doi.org/10.4028/www.scientific.net/ast.89.82.
Pełny tekst źródłaPfeifer, Judit, Enikõ Horváth, Zófia Vértesy, Péter Arató, and Csaba Balázsi. "Chemical Methods for Scanning Electron Microscope Characterization of Non-Oxide Ceramics and Composites." Key Engineering Materials 409 (March 2009): 382–85. http://dx.doi.org/10.4028/www.scientific.net/kem.409.382.
Pełny tekst źródłaHösel, T., Claas Müller, and Holger Reinecke. "Analysis of Surface Reaction Mechanisms on Electrically Non-Conductive Zirconia, Occurring within the Spark Erosion Process Chain." Key Engineering Materials 504-506 (February 2012): 1171–76. http://dx.doi.org/10.4028/www.scientific.net/kem.504-506.1171.
Pełny tekst źródłaFan, Hong Wei, Bing Hai Lv, Ju Long Yuan, Q. F. Deng, and W. F. Yao. "Fillers and Dissolvent in Porous Self-Generating Fine Super-Hard Abrasive Tool." Advanced Materials Research 135 (October 2010): 398–403. http://dx.doi.org/10.4028/www.scientific.net/amr.135.398.
Pełny tekst źródłaPodzorova, L. I., A. A. Il’icheva, N. A. Mikhayilina, et al. "Ceramic based on complex oxide solid solution of zirconia in tetragonal form for prosthetic dentistry." Perspektivnye Materialy 1 (2024): 30–37. http://dx.doi.org/10.30791/1028-978x-2024-1-30-37.
Pełny tekst źródłaZhao, Bingqing, Qibin Liu, Geng Tang, and Dunying Wang. "Microstructure and Biocompatibility of Graphene Oxide/BCZT Composite Ceramics via Fast Hot-Pressed Sintering." Coatings 14, no. 6 (2024): 689. http://dx.doi.org/10.3390/coatings14060689.
Pełny tekst źródłaGadzhiev, Makhach Kh, Arsen E. Muslimov, Damir I. Yusupov та ін. "Gas-Thermal Spraying Synthesis of β-Ga2O3 Luminescent Ceramics". Materials 17, № 24 (2024): 6078. https://doi.org/10.3390/ma17246078.
Pełny tekst źródłaMelekhin, N. V., M. S. Boldin, A. A. Popov, et al. "INVESTIGATION OF THE EFFECT OF INTERNAL STRESSES ON THE BALLISTIC RESISTANCE OF FINE-GRAINED ALUMINUM OXIDE OBTAINED BY SPARK PLASMA SINTERING." Problems of Strength and Plasticity 84, no. 2 (2022): 272–81. http://dx.doi.org/10.32326/1814-9146-2022-84-2-272-281.
Pełny tekst źródłaButskhrikidze, David. "Diamond Grinding Technology of Flexural Strength Test Pieces of Super hard, Brittle, Composite-ceramic Materials and Technological Equipment." Works of Georgian Technical University, no. 4(522) (December 21, 2021): 105–13. http://dx.doi.org/10.36073/1512-0996-2021-4-105-113.
Pełny tekst źródłaVolosova, Marina A., Anna A. Okunkova, Sergey V. Fedorov, Khaled Hamdy, and Mariya A. Mikhailova. "Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials." Technologies 8, no. 2 (2020): 32. http://dx.doi.org/10.3390/technologies8020032.
Pełny tekst źródłaFedotov, Anatoliy V., Aleksey S. Dorokhov, and Dmitriy A. Kovalev. "PROSPECTS FOR THE USE OF CERAMIC MATERIALS FOR THE NEEDS OF THE AGRO-INDUSTRIAL COMPLEX." Tekhnicheskiy servis mashin 2, no. 143 (2021): 91–102. http://dx.doi.org/10.22314/2618-8287-2021-59-2-91-102.
Pełny tekst źródłaCarter, C. Barry. "Dislocations in Ceramics." Microscopy and Microanalysis 4, S2 (1998): 550–51. http://dx.doi.org/10.1017/s143192760002287x.
Pełny tekst źródłaGlukharev, Artem, Oleg Glumov, Ivan Smirnov, Evgeniy Boltynjuk, Olga Kurapova, and Vladimir Konakov. "Phase Formation and the Electrical Properties of YSZ/rGO Composite Ceramics Sintered Using Silicon Carbide Powder Bed." Applied Sciences 12, no. 1 (2021): 190. http://dx.doi.org/10.3390/app12010190.
Pełny tekst źródłaSuastiyanti, Dwita, Sri Yatmani, and YuliNurul Maulida. "A CHEMICAL ROUTE TO THE SYNTHESIS OF Bi1-xMgxFeO3 (x=0.1 and x=0.07) NANOPARTICLE WITH ENHANCED ELECTRICAL PROPERTIES AS MULTIFERROIC MATERIAL." International Journal of Engineering Technologies and Management Research 5, no. 6 (2020): 103–12. http://dx.doi.org/10.29121/ijetmr.v5.i6.2018.250.
Pełny tekst źródłaDwita, Suastiyanti, Yatmani Sri, and Maulida YuliNurul. "A CHEMICAL ROUTE TO THE SYNTHESIS OF Bi1-xMgxFeO3 (x=0.1 and x=0.07) NANOPARTICLE WITH ENHANCED ELECTRICAL PROPERTIES AS MULTIFERROIC MATERIAL." International Journal of Engineering Technologies and Management Research 5, no. 6 (2018): 103–12. https://doi.org/10.5281/zenodo.1313106.
Pełny tekst źródłaOlvera, Mauricio, Marla Berenice Hernández Hernández, Sergio Garcia Villarreal, et al. "Inhibition grain growth and electrical properties by adding In2O3 to SnO2-Co3O4-Ta2O5 ceramics." Revista Mexicana de Física 65, no. 1 (2018): 25. http://dx.doi.org/10.31349/revmexfis.65.25.
Pełny tekst źródłaKORNILOV, A. V., and L. N. NAZHAROVA. "EFFECTIVE ADDITIVES FOR THE PRODUCTION OF WALL CERAMICS FROM LOW-GRADE CLAY RAW MATERIALS." Herald of Technological University 28, no. 6 (2025): 71–75. https://doi.org/10.55421/3034-4689_2025_28_6_71.
Pełny tekst źródłaGuerra, J. D. S., Y. Leyet, F. Guerrero, Y. Romaguera, J. Pérez, and L. Aguilera. "Microstructure and Electrical Properties of Bi3+ Modified ZnO Ceramics." Key Engineering Materials 434-435 (March 2010): 318–223. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.318.
Pełny tekst źródłaShin, Hyun-Ho, Yolande Berta, and Robert F. Speyer. "Effect of processing temperature on interfacial layer formation in SiC fiber-reinforced glass-ceramic composites." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 1 (1992): 62–63. http://dx.doi.org/10.1017/s0424820100120710.
Pełny tekst źródłaFontana, Andreia Cristina Brenner, and Alvaro Luiz Mathias. "Characterization and thermal analysis of metalworking sludge as a partial substitute for clays in ceramic production." Revista Gestão & Sustentabilidade 7, no. 1 (2025): e14672. https://doi.org/10.36661/2596-142x.2025v7n1.14672.
Pełny tekst źródłaRondinella, Alfredo, Elia Marin, Brian J. McEntire, et al. "Bioceramics are Not Bioinert: The Role of Oxide and Non-Oxide Bioceramics on the Oxidation of UHMWPE Components in Artificial Joints." Key Engineering Materials 782 (October 2018): 165–75. http://dx.doi.org/10.4028/www.scientific.net/kem.782.165.
Pełny tekst źródłaDunyushkina, Liliya A. "Field-assisted sintering of refractory oxygen-ion and proton conducting ceramics." Electrochemical Materials and Technologies 3, no. 3 (Special Issue) (2024): 20243040. http://dx.doi.org/10.15826/elmattech.2024.3.040.
Pełny tekst źródłaMahnicka-Goremikina, Ludmila, Ruta Svinka, Visvaldis Svinka, et al. "Thermal Properties of Porous Mullite Ceramics Modified with Microsized ZrO2 and WO3." Materials 15, no. 22 (2022): 7935. http://dx.doi.org/10.3390/ma15227935.
Pełny tekst źródłaNickel, Klaus G. "Corrosion of non-oxide ceramics." Ceramics International 23, no. 2 (1997): 127–33. http://dx.doi.org/10.1016/s0272-8842(96)00008-9.
Pełny tekst źródłaSato, Tsugio, and Masahiko Shimada. "Corrosion of Non-oxide Ceramics." CORROSION ENGINEERING 37, no. 6 (1988): 373–78. http://dx.doi.org/10.3323/jcorr1974.37.6_373.
Pełny tekst źródłaMen'shikova, V., and L. Demina. "NON-PLASTIC RAW MATERIALS FOR THE PRODUCTION OF CONSTRUCTION CERAMICS." Construction Materials and Products 3, no. 4 (2020): 31–38. http://dx.doi.org/10.34031/2618-7183-2020-3-4-31-38.
Pełny tekst źródłade la Torre, Guido Manuel Olvera, Monika Tatarková, Zuzana Netriová, et al. "Applying the Alkali-Activation Method to Encapsulate Silicon Nitride Particles in a Bioactive Matrix for Augmented Strength and Bioactivity." Materials 17, no. 2 (2024): 328. http://dx.doi.org/10.3390/ma17020328.
Pełny tekst źródłaSawaoka, Akira B. "Dynamic consolidation of non-oxide ceramic powders." Physica B+C 139-140 (May 1986): 809–12. http://dx.doi.org/10.1016/0378-4363(86)90707-2.
Pełny tekst źródłaDhanasekar, S., Arul Thayammal Ganesan, Taneti Lilly Rani, et al. "A Comprehensive Study of Ceramic Matrix Composites for Space Applications." Advances in Materials Science and Engineering 2022 (September 8, 2022): 1–9. http://dx.doi.org/10.1155/2022/6160591.
Pełny tekst źródła