Gotowa bibliografia na temat „Noncommutative algebras”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Noncommutative algebras”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Noncommutative algebras"
Arutyunov, A. A. "Derivation Algebra in Noncommutative Group Algebras". Proceedings of the Steklov Institute of Mathematics 308, nr 1 (styczeń 2020): 22–34. http://dx.doi.org/10.1134/s0081543820010022.
Pełny tekst źródłaZhou, Chaoyuan. "Acyclic Complexes and Graded Algebras". Mathematics 11, nr 14 (19.07.2023): 3167. http://dx.doi.org/10.3390/math11143167.
Pełny tekst źródłaAbel, Mati, i Krzysztof Jarosz. "Noncommutative uniform algebras". Studia Mathematica 162, nr 3 (2004): 213–18. http://dx.doi.org/10.4064/sm162-3-2.
Pełny tekst źródłaXu, Ping. "Noncommutative Poisson Algebras". American Journal of Mathematics 116, nr 1 (luty 1994): 101. http://dx.doi.org/10.2307/2374983.
Pełny tekst źródłaRoh, Jaiok, i Ick-Soon Chang. "Approximate Derivations with the Radical Ranges of Noncommutative Banach Algebras". Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/594075.
Pełny tekst źródłaErcolessi, Elisa, Giovanni Landi i Paulo Teotonio-Sobrinho. "Noncommutative Lattices and the Algebras of Their Continuous Functions". Reviews in Mathematical Physics 10, nr 04 (maj 1998): 439–66. http://dx.doi.org/10.1142/s0129055x98000148.
Pełny tekst źródłaFerreira, Vitor O., Jairo Z. Gonçalves i Javier Sánchez. "Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras". International Journal of Algebra and Computation 25, nr 06 (wrzesień 2015): 1075–106. http://dx.doi.org/10.1142/s0218196715500319.
Pełny tekst źródłaLiang, Shi-Dong, i Matthew J. Lake. "An Introduction to Noncommutative Physics". Physics 5, nr 2 (18.04.2023): 436–60. http://dx.doi.org/10.3390/physics5020031.
Pełny tekst źródłaMahanta, Snigdhayan. "Noncommutative stable homotopy and stable infinity categories". Journal of Topology and Analysis 07, nr 01 (2.12.2014): 135–65. http://dx.doi.org/10.1142/s1793525315500077.
Pełny tekst źródłaLETZTER, EDWARD S. "NONCOMMUTATIVE IMAGES OF COMMUTATIVE SPECTRA". Journal of Algebra and Its Applications 07, nr 05 (październik 2008): 535–52. http://dx.doi.org/10.1142/s0219498808002941.
Pełny tekst źródłaRozprawy doktorskie na temat "Noncommutative algebras"
Rennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Pełny tekst źródłaHartman, Gregory Neil. "Graphs and Noncommutative Koszul Algebras". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.
Pełny tekst źródłaPh. D.
Schoenecker, Kevin J. "An infinite family of anticommutative algebras with a cubic form". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.
Pełny tekst źródłaRussell, Ewan. "Prime ideals in quantum algebras". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.
Pełny tekst źródłaPhan, Christopher Lee 1980. "Koszul and generalized Koszul properties for noncommutative graded algebras". Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.
Pełny tekst źródłaWe investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials.
Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
Meyer, Jonas R. "Noncommutative Hardy algebras, multipliers, and quotients". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.
Pełny tekst źródłaUhl, Christine. "Quantum Drinfeld Hecke Algebras". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.
Pełny tekst źródłaZhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras". London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.
Pełny tekst źródłaOblomkov, Alexei. "Double affine Hecke algebras and noncommutative geometry". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.
Pełny tekst źródłaIncludes bibliographical references (p. 93-96).
In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite dimensional representations of the algebras. In the second part we study the algebraic properties of the five-parameter family H(tl, t2, t3, t4; q) of double affine Hecke algebras of type CVC1, which control Askey- Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is an affine cubic surface C, obtained from a projective one by removing a triangle consisting of smooth points. Moreover, any such surface is obtained as the spectrum of the center of H for some values of parameters. We prove that the only fiat de- formations of H come from variations of parameters. This explains from the point of view of noncommutative geometry why one cannot add more parameters into the theory of Askey-Wilson polynomials. We also prove several results on the universality of the five-parameter family H(tl, t2, t3, t4; q) of algebras.
by Alexei Oblomkov.
Ph.D.
Gohm, Rolf. "Noncommutative stationary processes /". Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.
Pełny tekst źródłaKsiążki na temat "Noncommutative algebras"
Marubayashi, Hidetoshi. Prime Divisors and Noncommutative Valuation Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaKhalkhali, Masoud, i Guoliang Yu. Perspectives on noncommutative geometry. Providence, R.I: American Mathematical Society, 2011.
Znajdź pełny tekst źródłaSilva, Ana Cannas da. Geometric models for noncommutative algebras. Providence, R.I: American Mathematical Society, 1999.
Znajdź pełny tekst źródłaRosenberg, Alex. Noncommutative algebraic geometry and representations of quantized algebras. Dordrecht: Kluwer Academic Publishers, 1995.
Znajdź pełny tekst źródłaCuculescu, I. Noncommutative probability. Dordrecht: Kluwer Academic Publishers, 1994.
Znajdź pełny tekst źródłaRosenberg, Alexander L. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2.
Pełny tekst źródłaDiep, Do Ngoc. Methods of noncommutative geometry for group C*-algebras. Boca Raton: Chapman & Hall/CRC, 2000.
Znajdź pełny tekst źródłaBonfiglioli, Andrea. Topics in noncommutative algebra: The theorem of Campbell, Baker, Hausdorff and Dynkin. Heidelberg: Springer, 2012.
Znajdź pełny tekst źródłaDoran, Robert S., i Richard V. Kadison, red. Operator Algebras, Quantization, and Noncommutative Geometry. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/365.
Pełny tekst źródłaCzęści książek na temat "Noncommutative algebras"
Cuculescu, I., i A. G. Oprea. "Jordan Algebras". W Noncommutative Probability, 293–315. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_7.
Pełny tekst źródłaArzumanian, Victor, i Suren Grigorian. "Noncommutative Uniform Algebras". W Linear Operators in Function Spaces, 101–9. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_5.
Pełny tekst źródłaCuculescu, I., i A. G. Oprea. "Probability on von Neumann Algebras". W Noncommutative Probability, 53–94. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_2.
Pełny tekst źródłaRosenberg, Alexander L. "Noncommutative Affine Schemes". W Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 1–47. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_1.
Pełny tekst źródłaRosenberg, Alexander L. "Noncommutative Local Algebra". W Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 110–41. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_3.
Pełny tekst źródłaRosenberg, Alexander L. "Noncommutative Projective Spectrum". W Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 276–305. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_7.
Pełny tekst źródłaAschieri, Paolo. "Quantum Groups, Quantum Lie Algebras, and Twists". W Noncommutative Spacetimes, 111–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89793-4_7.
Pełny tekst źródłaBratteli, Ola. "Noncommutative vectorfields". W Derivations, Dissipations and Group Actions on C*-algebras, 34–240. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098820.
Pełny tekst źródłaGracia-Bondía, José M., Joseph C. Várilly i Héctor Figueroa. "Kreimer-Connes-Moscovici Algebras". W Elements of Noncommutative Geometry, 597–640. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_14.
Pełny tekst źródłaVárilly, Joseph C. "The Interface of Noncommutative Geometry and Physics". W Clifford Algebras, 227–42. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Noncommutative algebras"
VÁRILLY, JOSEPH C. "HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY". W Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0001.
Pełny tekst źródłaSchauenburg, P. "Weak Hopf algebras and quantum groupoids". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-12.
Pełny tekst źródłaKhalkhali, M., i B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Pełny tekst źródłaGomez, X., i S. Majid. "Relating quantum and braided Lie algebras". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Pełny tekst źródłaSzymański, Wojciech. "Quantum lens spaces and principal actions on graph C*-algebras". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-18.
Pełny tekst źródłaMORI, IZURU. "NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES". W Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.
Pełny tekst źródłaMajewski, Władysław A., i Marcin Marciniak. "On the structure of positive maps between matrix algebras". W Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-18.
Pełny tekst źródłaWakui, Michihisa. "The coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-20.
Pełny tekst źródłaLONGO, ROBERTO. "OPERATOR ALGEBRAS AND NONCOMMUTATIVE GEOMETRIC ASPECTS IN CONFORMAL FIELD THEORY". W XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0008.
Pełny tekst źródłaFernández, David, i Luis Álvarez–cónsul. "Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1". W The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0019.
Pełny tekst źródła