Gotowa bibliografia na temat „Nonlinear periodic systems”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Nonlinear periodic systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Nonlinear periodic systems"

1

Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Nonlinear Multivalued Periodic Systems." Journal of Dynamical and Control Systems 25, no. 2 (2018): 219–43. http://dx.doi.org/10.1007/s10883-018-9408-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Luo, Albert C. J. "Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems." International Journal of Bifurcation and Chaos 25, no. 03 (2015): 1550044. http://dx.doi.org/10.1142/s0218127415500443.

Pełny tekst źródła
Streszczenie:
This paper presents a semi-analytical method for periodic flows in continuous nonlinear dynamical systems. For the semi-analytical approach, differential equations of nonlinear dynamical systems are discretized to obtain implicit maps, and a mapping structure based on the implicit maps is employed for a periodic flow. From mapping structures, periodic flows in nonlinear dynamical systems are predicted analytically and the corresponding stability and bifurcations of the periodic flows are determined through the eigenvalue analysis. The periodic flows predicted by the single-step implicit maps a
Style APA, Harvard, Vancouver, ISO itp.
3

Verriest, Erik I. "Balancing for Discrete Periodic Nonlinear Systems." IFAC Proceedings Volumes 34, no. 12 (2001): 249–54. http://dx.doi.org/10.1016/s1474-6670(17)34093-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sundararajan, P., and S. T. Noah. "Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems." Journal of Vibration and Acoustics 119, no. 1 (1997): 9–20. http://dx.doi.org/10.1115/1.2889694.

Pełny tekst źródła
Streszczenie:
The analysis of systems subjected to periodic excitations can be highly complex in the presence of strong nonlinearities. Nonlinear systems exhibit a variety of dynamic behavior that includes periodic, almost-periodic (quasi-periodic), and chaotic motions. This paper describes a computational algorithm based on the shooting method that calculates the periodic responses of a nonlinear system under periodic excitation. The current algorithm calculates also the stability of periodic solutions and locates system parameter ranges where aperiodic and chaotic responses bifurcate from the periodic res
Style APA, Harvard, Vancouver, ISO itp.
5

Can, Le Xuan. "On periodic waves of the nonlinear systems." Vietnam Journal of Mechanics 20, no. 4 (1998): 11–19. http://dx.doi.org/10.15625/0866-7136/10037.

Pełny tekst źródła
Streszczenie:
The paper is concerned with the solvability and approximate solution of the nonlinear partial differential equation describing the periodic wave propagation. Necessary and sufficient conditions for the existence of the periodic wave solutions are obtained. An approximate method for solving the equation is presented. As an illustrative example, the equation of periodic waves of the electric cables is considered.
Style APA, Harvard, Vancouver, ISO itp.
6

Ortega, Juan-Pablo. "Relative normal modes for nonlinear Hamiltonian systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 133, no. 3 (2003): 665–704. http://dx.doi.org/10.1017/s0308210500002602.

Pełny tekst źródła
Streszczenie:
An estimate on the number of distinct relative periodic orbits around a stable relative equilibrium in a Hamiltonian system with continuous symmetry is given. This result constitutes a generalization to the Hamiltonian symmetric framework of a classical result by Weinstein and Moser on the existence of periodic orbits in the energy levels surrounding a stable equilibrium. The estimate obtained is very precise in the sense that it provides a lower bound for the number of relative periodic orbits at each prescribed energy and momentum values neighbouring the stable relative equilibrium in questi
Style APA, Harvard, Vancouver, ISO itp.
7

Grigoraş, Victor, and Carmen Grigoraş. "Connecting Analog and Discrete Nonlinear Systems for Noise Generation." Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 68, no. 1 (2022): 81–90. http://dx.doi.org/10.2478/bipie-2022-0005.

Pełny tekst źródła
Streszczenie:
Abstract Nonlinear systems exhibit complex dynamic behaviour, including quasi-periodic and chaotic. The present contribution presents a composed analogue and discrete-time structure, based on second-order nonlinear building blocks with periodic oscillatory behaviour, that can be used for complex signal generation. The chosen feedback connection of the two modules aims at obtaining a more complex nonlinear dynamic behaviour than that of the building blocks. Performing a parameter scan, it is highlighted that the resulting nonlinear system has a quasi-periodic behaviour for large ranges of param
Style APA, Harvard, Vancouver, ISO itp.
8

Zhang, Yu, Xue Yang, and Yong Li. "Affine-Periodic Solutions for Dissipative Systems." Abstract and Applied Analysis 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/157140.

Pełny tekst źródła
Streszczenie:
As generalizations of Yoshizawa’s theorem, it is proved that a dissipative affine-periodic system admits affine-periodic solutions. This result reveals some oscillation mechanism in nonlinear systems.
Style APA, Harvard, Vancouver, ISO itp.
9

Abbas, Saïd, Mouffak Benchohra, Soufyane Bouriah, and Juan J. Nieto. "Periodic solutions for nonlinear fractional differential systems." Differential Equations & Applications, no. 3 (2018): 299–316. http://dx.doi.org/10.7153/dea-2018-10-21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kamenskii, Mikhail, Oleg Makarenkov, and Paolo Nistri. "Small parameter perturbations of nonlinear periodic systems." Nonlinearity 17, no. 1 (2003): 193–205. http://dx.doi.org/10.1088/0951-7715/17/1/012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Nonlinear periodic systems"

1

Tang, Xiafei. "Periodic disturbance rejection of nonlinear systems." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/periodic-disturbance-rejection-of-nonlinear-systems(0bddefd9-2750-47fd-8c92-c90a01b8e1ef).html.

Pełny tekst źródła
Streszczenie:
Disturbance rejection is an important topic in control design since disturbances are inevitable in practical systems. To realise this target for nonlinear systems, this thesis brings in an assumption about the existence of a controlled invariant mani- fold and a Desired Feedforward Control (DFC) which is contained in the input to compensate the influence of disturbances. According to the approximation property of Neural Networks (NN) that any periodic signals defined in a compact set can be approximated by NN, the NN-based disturbance approximator is applied to approximate the DFC. Algorithmic
Style APA, Harvard, Vancouver, ISO itp.
2

Abd-Elrady, Emad. "Nonlinear Approaches to Periodic Signal Modeling." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Groves, James O. "Small signal analysis of nonlinear systems with periodic operating trajectories." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-162614/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhang, Zhen. "Adaptive robust periodic output regulation." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187118803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Khames, Imene. "Nonlinear network wave equations : periodic solutions and graph characterizations." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR04/document.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, nous étudions les équations d’ondes non-linéaires discrètes dans des réseaux finis arbitraires. C’est un modèle général, où le Laplacien continu est remplacé par le Laplacien de graphe. Nous considérons une telle équation d’onde avec une non-linéarité cubique sur les nœuds du graphe, qui est le modèle φ4 discret, décrivant un réseau mécanique d’oscillateurs non-linéaires couplés ou un réseau électrique où les composantes sont des diodes ou des jonctions Josephson. L’équation d’onde linéaire est bien comprise en termes de modes normaux, ce sont des solutions périodiques associ
Style APA, Harvard, Vancouver, ISO itp.
6

Warkomski, Edward Joseph 1958. "Nonlinear structures subject to periodic and random vibration with applications to optical systems." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277811.

Pełny tekst źródła
Streszczenie:
The methods for analysis of a three degree-of-freedom nonlinear optical support system, subject to periodic and random vibration, are presented. The analysis models were taken from those generated for the dynamic problems related to the NASA Space Infrared Telescope Facility (SIRTF). The models treat the one meter, 116 kilogram (258 pound) primary mirror of the SIRTF as a rigid mass, with elastic elements representing the mirror support structure. Both linear and nonlinear elastic supports are evaluated for the SIRTF. Advanced Continuous Simulation Language (ACSL), a commercially available sof
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Xiaohong. "Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40185.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Myers, Owen Dale. "Spatiotemporally Periodic Driven System with Long-Range Interactions." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/524.

Pełny tekst źródła
Streszczenie:
It is well known that some driven systems undergo transitions when a system parameter is changed adiabatically around a critical value. This transition can be the result of a fundamental change in the structure of the phase space, called a bifurcation. Most of these transitions are well classified in the theory of bifurcations. Among the driven systems, spatiotemporally periodic (STP) potentials are noteworthy due to the intimate coupling between their time and spatial components. A paradigmatic example of such a system is the Kapitza pendulum, which is a pendulum with an oscillating suspensio
Style APA, Harvard, Vancouver, ISO itp.
9

Hayward, Peter J. "On the computation of periodic responses for nonlinear dynamic systems with multi-harmonic forcing." Thesis, University of Sussex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429733.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Royston, Thomas James. "Computational and Experimental Analyses of Passive and Active, Nonlinear Vibration Mounting Systems Under Periodic Excitation /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487928649987553.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Nonlinear periodic systems"

1

Reithmeier, Eduard. Periodic Solutions of Nonlinear Dynamical Systems. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0094521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chulaevskiĭ, V. A. Almost periodic operators and related nonlinear integrable systems. Manchester University Press, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ambrosetti, A. Periodic solutions of singular Lagrangian systems. Birkhäuser, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

author, Bolle Philippe, ed. Quasi-periodic solutions of nonlinear wave equations in the D-dimensional torus. European Mathematical Society, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Reithmeier, Eduard. Periodic solutions of nonlinear dynamical systems: Numerical computation, stability, bifurcation, and transition to chaos. Springer-Verlag, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

P, Walker K., and United States. National Aeronautics and Space Administration., eds. Nonlinear mesomechanics of composites with periodic microstructure: Final report on NASA NAG3-882. National Aeronautics and Space Administration, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Springer-Verlag, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Luo, Albert C. J. Periodic Flows to Chaos in Time-delay Systems. Springer, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chulaevsky, V. A. Almost Periodic Operators and Related Nonlinear Integrable Systems (Nonlinear Science: Theory & Application). John Wiley & Sons, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Coti-Zelati, V., and A. Ambrosetti. Periodic Solutions of Singular Lagrangian Systems. Birkhauser Verlag, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Nonlinear periodic systems"

1

Toda, Morikazu. "Periodic Systems." In Theory of Nonlinear Lattices. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Luo, Albert C. J. "Periodic Flows in Continuous Systems." In Nonlinear Physical Science. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47275-0_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Szemplińska-Stupnicka, Wanda. "Secondary Resonances (Periodic and Almost-Periodic)." In The Behavior of Nonlinear Vibrating Systems. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1870-2_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Akhmet, Marat. "Discontinuous Almost Periodic Functions." In Nonlinear Systems and Complexity. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Akhmet, Marat. "Discontinuous Almost Periodic Solutions." In Nonlinear Systems and Complexity. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Anishchenko, Vadim S., Tatyana E. Vadivasova, and Galina I. Strelkova. "Synchronization of Periodic Self-Sustained Oscillations." In Deterministic Nonlinear Systems. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06871-8_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Belyakov, Vladimir Alekseevich. "Nonlinear Optics of Periodic Media." In Partially Ordered Systems. Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4396-0_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Akhmet, Marat. "Periodic Solutions of Nonlinear Systems." In Principles of Discontinuous Dynamical Systems. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6581-3_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Luo, Albert C. J. "Periodic Flows in Time-delay Systems." In Nonlinear Systems and Complexity. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42778-2_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Luo, Albert C. J. "Periodic Flows in Time-Delay Systems." In Nonlinear Systems and Complexity. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42664-8_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Nonlinear periodic systems"

1

Sukhorukov, Andrey A., N. Marsal, A. Minovich, et al. "Control of modulational instability in periodic feedback systems." In Nonlinear Photonics. OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmd7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shermeneva, Maria. "Nonlinear periodic waves on a slope." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vakakis, Alexander. "Nonlinear Periodic Systems: Bands and Localization." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87315.

Pełny tekst źródła
Streszczenie:
We consider the dynamics of nonlinear mono-coupled periodic media. When coupling dominates over nonlinearity near-field standing waves and spatially extended traveling waves exist, inside stop and pass bands, respectively, of the nonlinear system. Nonlinear standing waves are analytically studied using a nonlinear normal mode formulation, whereas nonlinear traveling waves are analyzed by the method of multiple scales. When the nonlinear effects are of the same order with the coupling ones a completely different picture emerges, since nonlinear resonance interactions are unavoidable. As a resul
Style APA, Harvard, Vancouver, ISO itp.
4

Vladimirov, A. G., E. B. Pelyukhova, and E. E. Fradkin. "Periodic and Chaotic Operations of a Laser with a Saturable Absorber." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.oc527.

Pełny tekst źródła
Streszczenie:
We study numerically and analytically the small amplitude periodic solutions of semiclassical equations for a laser with a saturable absorber. We investigate the bifurcation sequence, leading to period-doublings, crises of chaotic attractors, and intermittency.
Style APA, Harvard, Vancouver, ISO itp.
5

Mandel, Paul, N. P. Pettiaux, Wang Kaige, P. Galatola, and L. A. Lugiato. "Generic Properties of Periodic Attractors in Two-Photon Processes." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ob257.

Pełny tekst źródła
Streszczenie:
We show that the periodic attractors occurring in two-photon processes displaying a phase instability have common properties including a domain of hysteresis. The case of degenerate four-wave mixing includes also some nongeneric attractors which exhibit a Berry phase phenomenon.
Style APA, Harvard, Vancouver, ISO itp.
6

Winful, Herbert G., Shawe-Shiuan Wang, and Richard K. DeFreez. "Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.pdp4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Winful, Herbert G., Shawe-Shiuan Wang, and Richard K. DcFreez. "Spontaneous Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.sdslad119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

De Jagher, P. C., and D. Lenstra. "The modulated semiconductor laser: a Hamiltonian search for its periodic attractors." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tha5.

Pełny tekst źródła
Streszczenie:
Modulated lasers have been investigated for over a decade now, c.f. ref. [3] and references cited therein. Periodic as well as chaotic types of operation have been observed. In this paper we put forward a mathematical technique to calculate lower and upper bounds for the modulation strength which is needed to sustain a periodic large amplitude output.
Style APA, Harvard, Vancouver, ISO itp.
9

Pettiaux, Nicolas, and Thomas Erneux. "From harmonic to pulsating periodic solutions in intracavity second harmonic generation." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc25.

Pełny tekst źródła
Streszczenie:
We consider the problem of Second Harmonic Generation (SHG) inside a resonant cavity, pumped by an external laser. The elementary process that takes place in SHG is the absorption of 2 photons of frequency ω and the emission of one photon at frequency 2ω. Drummond et al[1] have shown that this problem can be modeled by two ordinary differential equations for the (complex) amplitudes of the electrical fields: where overbar means complex conjugate.
Style APA, Harvard, Vancouver, ISO itp.
10

Royston, Thomas J., and Rajendra Singh. "Periodic Response of Nonlinear Engine Mounting Systems." In SAE Noise and Vibration Conference and Exposition. SAE International, 1995. http://dx.doi.org/10.4271/951297.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Nonlinear periodic systems"

1

Mirus, Kevin A. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/656820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Soloviev, Vladimir, and Andrey Belinskij. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2851.

Pełny tekst źródła
Streszczenie:
This article demonstrates the possibility of constructing indicators of critical and crisis phenomena in the volatile market of cryptocurrency. For this purpose, the methods of the theory of complex systems such as recurrent analysis of dynamic systems and the calculation of permutation entropy are used. It is shown that it is possible to construct dynamic measures of complexity, both recurrent and entropy, which behave in a proper way during actual pre-crisis periods. This fact is used to build predictors of crisis phenomena on the example of the main five crises recorded in the time series o
Style APA, Harvard, Vancouver, ISO itp.
3

Moon, Francis C. Nonlinear dynamics of fluid-structure systems. Final technical report for period January 5, 1991 - December 31, 1997. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/756804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bielinskyi, Andrii O., Oleksandr A. Serdyuk, Сергій Олексійович Семеріков, Володимир Миколайович Соловйов, Андрій Іванович Білінський, and О. А. Сердюк. Econophysics of cryptocurrency crashes: a systematic review. Криворізький державний педагогічний університет, 2021. http://dx.doi.org/10.31812/123456789/6974.

Pełny tekst źródła
Streszczenie:
Cryptocurrencies refer to a type of digital asset that uses distributed ledger, or blockchain technology to enable a secure transaction. Like other financial assets, they show signs of complex systems built from a large number of nonlinearly interacting constituents, which exhibits collective behavior and, due to an exchange of energy or information with the environment, can easily modify its internal structure and patterns of activity. We review the econophysics analysis methods and models adopted in or invented for financial time series and their subtle properties, which are applicable to ti
Style APA, Harvard, Vancouver, ISO itp.
5

Wu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/ytgv8834.

Pełny tekst źródła
Streszczenie:
Bridges often serve as key links in local and national transportation networks. Bridge closures can result in severe costs, not only in the form of repair or replacement, but also in the form of economic losses related to medium- and long-term interruption of businesses and disruption to surrounding communities. In addition, continuous functionality of bridges is very important after any seismic event for emergency response and recovery purposes. Considering the importance of these structures, the associated structural design philosophy is shifting from collapse prevention to maintaining funct
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!