Artykuły w czasopismach na temat „Nonstoichiometric oxides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Nonstoichiometric oxides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Pengqi, Mingli Qin, Zheng Chen, Baorui Jia, and Xuanhui Qu. "Solution combustion synthesis of nanosized WOx: characterization, mechanism and excellent photocatalytic properties." RSC Advances 6, no. 86 (2016): 83101–9. http://dx.doi.org/10.1039/c6ra12375a.
Pełny tekst źródłaDieckmann, Rüdiger. "Point Defects and Diffusion in Nonstoichiometric Metal Oxides." MRS Bulletin 16, no. 12 (1991): 27–32. http://dx.doi.org/10.1557/s0883769400055317.
Pełny tekst źródłaLv, Min, Xiaoli Guo, Zhongpeng Wang, Liguo Wang, Qian Li, and Zhaoliang Zhang. "Synthesis and characterization of Co–Al–Fe nonstoichiometric spinel-type catalysts for catalytic CO oxidation." RSC Advances 6, no. 32 (2016): 27052–59. http://dx.doi.org/10.1039/c6ra02204a.
Pełny tekst źródłaEzbiri, M., M. Takacs, D. Theiler, R. Michalsky та A. Steinfeld. "Tunable thermodynamic activity of LaxSr1−xMnyAl1−yO3−δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) perovskites for solar thermochemical fuel synthesis". Journal of Materials Chemistry A 5, № 8 (2017): 4172–82. http://dx.doi.org/10.1039/c6ta06644e.
Pełny tekst źródłaZhi-Chang, Wang. "Thermodynamics of nonstoichiometric multicomponent uranium oxides." Journal of Physics and Chemistry of Solids 48, no. 6 (1987): 527–33. http://dx.doi.org/10.1016/0022-3697(87)90047-3.
Pełny tekst źródłaChaudhry, M. Iqbal. "A study of native oxides of β–SiC using Auger electron spectroscopy". Journal of Materials Research 4, № 2 (1989): 404–7. http://dx.doi.org/10.1557/jmr.1989.0404.
Pełny tekst źródłaBolotov, V. V., E. V. Knyazev, S. N. Nesov, K. E. Ivlev, I. V. Ponomareva, and E. A. Roslikova. "SELECTIVE SENSORY MULTILAYER STRUCTURES BASED ON TIN AND MANGANESE OXIDES." DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 12, no. 3 (2024): 12–17. https://doi.org/10.25206/2310-9793-2024-12-3-12-17.
Pełny tekst źródłaPrieto, O., and V. Rives. "Preparación y caracterización de óxidos de manganeso no estequiométricos." Boletín de la Sociedad Española de Cerámica y Vidrio 39, no. 3 (2000): 233–38. http://dx.doi.org/10.3989/cyv.2000.v39.i3.832.
Pełny tekst źródłaIslamov, Damir R., Vladimir N. Kruchinin, Vladimir Sh Aliev, et al. "Potential Fluctuation in RRAM Based on Non-Stoichiometric Hafnium Sub-Oxides." Advances in Science and Technology 99 (October 2016): 69–74. http://dx.doi.org/10.4028/www.scientific.net/ast.99.69.
Pełny tekst źródłaMazunov, D. O. "Field Emission Properties of Nonstoichiometric Silicon Oxides." Telecommunications and Radio Engineering 63, no. 10 (2005): 891–901. http://dx.doi.org/10.1615/telecomradeng.v63.i10.50.
Pełny tekst źródłaRoutbort, J. L., and G. W. Tomlins. "Atomic transport of oxygen in nonstoichiometric oxides." Radiation Effects and Defects in Solids 137, no. 1-4 (1995): 233–38. http://dx.doi.org/10.1080/10420159508222727.
Pełny tekst źródłaCOSULTCHI, A., E. GARCÍAFIGUEROA, A. MUÑOZ-FLORES, et al. "DEPOSITION OF PETROLEUM HEAVY ORGANIC COMPOUNDS ON A LOW CARBON STEEL TUBING." Surface Review and Letters 06, no. 06 (1999): 1299–306. http://dx.doi.org/10.1142/s0218625x99001463.
Pełny tekst źródłaTsvetkov, Dmitry S., Vladimir V. Sereda, Dmitry A. Malyshkin, Ivan L. Ivanov, and Andrey Yu Zuev. "Chemical lattice strain in nonstoichiometric oxides: an overview." Journal of Materials Chemistry A 10, no. 12 (2022): 6351–75. http://dx.doi.org/10.1039/d1ta08407k.
Pełny tekst źródłaCARTER, S. "Oxygen transport in selected nonstoichiometric perovskite-structure oxides." Solid State Ionics 53-56 (July 1992): 597–605. http://dx.doi.org/10.1016/0167-2738(92)90435-r.
Pełny tekst źródłaMrowec, S. "On the defect structure in nonstoichiometric metal oxides." Ceramics International 11, no. 4 (1985): 134. http://dx.doi.org/10.1016/0272-8842(85)90111-7.
Pełny tekst źródłaVaschilin, V. S., and Egor Krivonozhko. "STUDIES OF THE INFLUENCE OF THE." Actual directions of scientific researches of the XXI century: theory and practice 8, no. 2 (2020): 40–46. http://dx.doi.org/10.34220/2308-8877-2020-8-2-40-46.
Pełny tekst źródłaLi, Junhao, Ningyi Jiang, Jinyun Liao, Yufa Feng, Quanbing Liu, and Hao Li. "Nonstoichiometric Cu0.6Ni0.4Co2O4 Nanowires as an Anode Material for High Performance Lithium Storage." Nanomaterials 10, no. 2 (2020): 191. http://dx.doi.org/10.3390/nano10020191.
Pełny tekst źródłaLi, Ming-Yen, Pouyan Shen, and Shyh-Lung Hwang. "Mesopores in nonstoichiometric oxides via oxyexsolution and Kirkendall effects." Journal of the European Ceramic Society 27, no. 6 (2007): 2355–59. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.10.008.
Pełny tekst źródłaHuang, Chang-Ning, Jong-Shing Bow, Yuyuan Zheng, Shuei-Yuan Chen, New Jin Ho, and Pouyan Shen. "Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water." Nanoscale Research Letters 5, no. 6 (2010): 972–85. http://dx.doi.org/10.1007/s11671-010-9591-4.
Pełny tekst źródłaCvetkovic, Vesna, Jelena Purenovic, and Aleksandra Zarubica. "Electrochemical behavior of the catalyst with kaolinite-bentonite substrate in water." Facta universitatis - series: Physics, Chemistry and Technology 3, no. 1 (2004): 41–52. http://dx.doi.org/10.2298/fupct0401041c.
Pełny tekst źródłaPura, Agnese, Kristaps Rubenis, Dmitrijs Stepanovs, Liga Berzina-Cimdina, and Jurijs Ozolins. "Semiconducting properties of nonstoichiometric TiO2-x ceramics." Processing and Application of Ceramics 6, no. 2 (2012): 91–95. http://dx.doi.org/10.2298/pac1202091p.
Pełny tekst źródłaLou, Jiahui, Zhenyu Tian, Yunyun Wu, et al. "Thermodynamic assessment of nonstoichiometric oxides for solar thermochemical fuel production." Solar Energy 241 (July 2022): 504–14. http://dx.doi.org/10.1016/j.solener.2022.05.008.
Pełny tekst źródłaGritsenko, V. A. "Atomic structure of the amorphous nonstoichiometric silicon oxides and nitrides." Physics-Uspekhi 51, no. 7 (2008): 699–708. http://dx.doi.org/10.1070/pu2008v051n07abeh006592.
Pełny tekst źródłaNEMUDRY, A., and N. UVAROV. "Nanostructuring in composites and grossly nonstoichiometric or heavily doped oxides." Solid State Ionics 177, no. 26-32 (2006): 2491–94. http://dx.doi.org/10.1016/j.ssi.2006.05.002.
Pełny tekst źródłaZhao, Hailei, Yunfei Cheng, Nansheng Xu та ін. "Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3−δ perovskite oxides". Solid State Ionics 181, № 5-7 (2010): 354–58. http://dx.doi.org/10.1016/j.ssi.2009.12.016.
Pełny tekst źródłaKim, Hoijoon, Taejin Park, Mirine Leem, et al. "Sulfidation characteristics of amorphous nonstoichiometric Mo-oxides for MoS2 synthesis." Applied Surface Science 535 (January 2021): 147684. http://dx.doi.org/10.1016/j.apsusc.2020.147684.
Pełny tekst źródłaIl’in, E. G., A. G. Beirakhov, V. G. Yarzhemskii, A. K. Buryak, and A. E. Gekhman. "Symmetric cage structures of isomers of nonstoichiometric lower molybdenum oxides." Doklady Chemistry 475, no. 2 (2017): 173–78. http://dx.doi.org/10.1134/s0012500817080080.
Pełny tekst źródłaMcDaniel, A. H., A. Ambrosini, E. N. Coker, et al. "Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production." Energy Procedia 49 (2014): 2009–18. http://dx.doi.org/10.1016/j.egypro.2014.03.213.
Pełny tekst źródłaBratan, Veronica, Anca Vasile, Paul Chesler, and Cristian Hornoiu. "Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs." Catalysts 12, no. 10 (2022): 1134. http://dx.doi.org/10.3390/catal12101134.
Pełny tekst źródłaUzunova, Ellie L., Dimitar G. Klissurski, and Stella D. Nemska. "Surface studies of nano-dimensional particle size iron-manganese spinel mixed oxides." Canadian Journal of Chemistry 76, no. 10 (1998): 1361–64. http://dx.doi.org/10.1139/v98-186.
Pełny tekst źródłaKawada, Tatsuya. "(Invited) Chemo-Mechanical Coupling Phenomena in Solid Oxide Fuel Cells." ECS Meeting Abstracts MA2018-01, no. 32 (2018): 1930. http://dx.doi.org/10.1149/ma2018-01/32/1930.
Pełny tekst źródłaSeidman, David, and Donglu Shi. "Point Defects in Materials Part II: Applications to Different Materials Problems." MRS Bulletin 16, no. 12 (1991): 18–21. http://dx.doi.org/10.1557/s0883769400055299.
Pełny tekst źródłaУмирзаков, Б. Е., М. К. Рузибаева, З. А. Исаханов та Р. М. Ёркулов. "Формирование наноразмерных пленок SiO-=SUB=-2-=/SUB=- на поверхности свободной пленочной системы Si/Cu при имплантации ионов O-=SUB=-2-=/SUB=--=SUP=-+-=/SUP=-". Журнал технической физики 89, № 6 (2019): 935. http://dx.doi.org/10.21883/jtf.2019.06.47643.210-18.
Pełny tekst źródłaGrzesik, Zbigniew. "Experimental Errors in Studying the Defect Mobility in Nonstoichiometric Metal Oxides." Defect and Diffusion Forum 237-240 (April 2005): 139–44. http://dx.doi.org/10.4028/www.scientific.net/ddf.237-240.139.
Pełny tekst źródłaTetot, R., and G. Boureau. "Defect interactions, statistical thermodynamic and electronic transport in ionic nonstoichiometric oxides." Radiation Effects and Defects in Solids 137, no. 1-4 (1995): 239–46. http://dx.doi.org/10.1080/10420159508222728.
Pełny tekst źródłaLi, Qinghao, Ruimin Qiao, Apurva Mehta, et al. "Amorphous nonstoichiometric oxides with tunable room-temperature ferromagnetism and electrical transport." Science Bulletin 65, no. 20 (2020): 1718–25. http://dx.doi.org/10.1016/j.scib.2020.06.035.
Pełny tekst źródłaYapp, Crayton J., and Harald Poths. "Stable hydrogen isotopes in iron oxides: 111. Nonstoichiometric hydrogen in goethite." Geochimica et Cosmochimica Acta 59, no. 16 (1995): 3405–12. http://dx.doi.org/10.1016/0016-7037(95)00220-t.
Pełny tekst źródłaMcDaniel, Anthony H. "Renewable energy carriers derived from concentrating solar power and nonstoichiometric oxides." Current Opinion in Green and Sustainable Chemistry 4 (April 2017): 37–43. http://dx.doi.org/10.1016/j.cogsc.2017.02.004.
Pełny tekst źródłaBHAGAT, S., and R. KUMAR. "ChemInform Abstract: Reactivity and Electric Transport of Nonstoichiometric Rare Earth Oxides." ChemInform 23, no. 41 (2010): no. http://dx.doi.org/10.1002/chin.199241263.
Pełny tekst źródłaSarikov, Andrey. "Thermodynamic Theory of Phase Separation in Nonstoichiometric Si Oxide Films Induced by High-Temperature Anneals." Nanomanufacturing 3, no. 3 (2023): 293–314. http://dx.doi.org/10.3390/nanomanufacturing3030019.
Pełny tekst źródłaPirzada, Mohsin, Robin W. Grimes, John Maguire, and Kurt Sickafus. "Predictions of strontium accommodation in A2B2O7 pyrochlores." Journal of Materials Research 17, no. 8 (2002): 2041–47. http://dx.doi.org/10.1557/jmr.2002.0302.
Pełny tekst źródłaChizhik, Stanislav A., and Alexander P. Nemudry. "Nonstoichiometric oxides as a continuous homologous series: linear free-energy relationship in oxygen exchange." Physical Chemistry Chemical Physics 20, no. 27 (2018): 18447–54. http://dx.doi.org/10.1039/c8cp02924e.
Pełny tekst źródłaKawada, Tatsuya, Chikara Sekizawa, Ryuta Sato, Satoshi Watanabe, and Keiji Yashiro. "(Invited) Potentiometric Measurements of Defect Equilibrium of Nonstoichiometric Oxides Under Mechanical Load." ECS Meeting Abstracts MA2020-01, no. 40 (2020): 1782. http://dx.doi.org/10.1149/ma2020-01401782mtgabs.
Pełny tekst źródłaRedl, Franz X., Charles T. Black, Georgia C. Papaefthymiou, et al. "Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale." Journal of the American Chemical Society 126, no. 44 (2004): 14583–99. http://dx.doi.org/10.1021/ja046808r.
Pełny tekst źródłaTuller, H. "Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: impact and control." Solid State Ionics 94, no. 1-4 (1997): 63–74. http://dx.doi.org/10.1016/s0167-2738(96)00585-1.
Pełny tekst źródłaGu, Zhenao, Le Zhang, Bo Wen, et al. "Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides." Nano Energy 53 (November 2018): 887–97. http://dx.doi.org/10.1016/j.nanoen.2018.09.019.
Pełny tekst źródłaGu, Xiang-Kui, Samji Samira, and Eranda Nikolla. "Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides." Chemistry of Materials 30, no. 9 (2018): 2860–72. http://dx.doi.org/10.1021/acs.chemmater.8b00694.
Pełny tekst źródłaWang, Qi, Ajinkya Puntambekar, and Vidhya Chakrapani. "Vacancy-Induced Semiconductor–Insulator–Metal Transitions in Nonstoichiometric Nickel and Tungsten Oxides." Nano Letters 16, no. 11 (2016): 7067–77. http://dx.doi.org/10.1021/acs.nanolett.6b03311.
Pełny tekst źródłaBonačić-Kouteck, V., J. Pittner, R. Pou-Amérigo, and M. Hartmann. "Ab-initio study of structural and optical properties of nonstoichiometric alkalimetal- oxides." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 40, no. 1-4 (1997): 445–47. http://dx.doi.org/10.1007/s004600050248.
Pełny tekst źródłaDu, Yang, and Arthur S. Nowick. "Structural Transitions and Proton Conduction in Nonstoichiometric A3B'B"O9 Perovskite-Type Oxides." Journal of the American Ceramic Society 78, no. 11 (1995): 3033–39. http://dx.doi.org/10.1111/j.1151-2916.1995.tb09079.x.
Pełny tekst źródła