Gotowa bibliografia na temat „Numerical analysis : finite volumes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Numerical analysis : finite volumes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Numerical analysis : finite volumes"
Idelsohn, S. R., i E. Oñate. "Finite volumes and finite elements: Two ‘good friends’". International Journal for Numerical Methods in Engineering 37, nr 19 (15.10.1994): 3323–41. http://dx.doi.org/10.1002/nme.1620371908.
Pełny tekst źródłaDroniou, Jérôme, Robert Eymard, Thierry Gallouët i Raphaèle Herbin. "The Gradient Discretisation Method for Linear Advection Problems". Computational Methods in Applied Mathematics 20, nr 3 (1.07.2020): 437–58. http://dx.doi.org/10.1515/cmam-2019-0060.
Pełny tekst źródłaKhattri, Sanjay Kumar. "Nonlinear elliptic problems with the method of finite volumes". Differential Equations and Nonlinear Mechanics 2006 (2006): 1–16. http://dx.doi.org/10.1155/denm/2006/31797.
Pełny tekst źródłaDubois, Fran�ois. "Finite volumes and mixed Petrov-Galerkin finite elements: The unidimensional problem". Numerical Methods for Partial Differential Equations 16, nr 3 (maj 2000): 335–60. http://dx.doi.org/10.1002/(sici)1098-2426(200005)16:3<335::aid-num5>3.0.co;2-x.
Pełny tekst źródłaDa Silva Almeida Junior, Dilberto, Anderson de Jesus Araujo Ramos, Joao Carlos Pantoja Fortes i Mauro De Lima Santos. "Ingham type approach for uniform observability inequality of the semi-discrete coupled wave equations". Electronic Journal of Differential Equations 2020, nr 01-132 (22.12.2020): 127. http://dx.doi.org/10.58997/ejde.2020.127.
Pełny tekst źródłaLIU, S. J., H. WANG i H. ZHANG. "SMOOTHED FINITE ELEMENTS LARGE DEFORMATION ANALYSIS". International Journal of Computational Methods 07, nr 03 (wrzesień 2010): 513–24. http://dx.doi.org/10.1142/s0219876210002246.
Pełny tekst źródłaDiniz, Jacqueline F. B., João M. P. Q. Delgado, Anderson F. Vilela, Ricardo S. Gomez, Arianne D. Viana, Maria J. Figueiredo, Diego D. S. Diniz i in. "Drying of Sisal Fiber: A Numerical Analysis by Finite-Volumes". Energies 14, nr 9 (27.04.2021): 2514. http://dx.doi.org/10.3390/en14092514.
Pełny tekst źródłaDeuring, Paul, i Robert Eymard. "L2-stability of a finite element – finite volume discretization of convection-diffusion-reaction equations with nonhomogeneous mixed boundary conditions". ESAIM: Mathematical Modelling and Numerical Analysis 51, nr 3 (14.04.2017): 919–47. http://dx.doi.org/10.1051/m2an/2016042.
Pełny tekst źródłaDroniou, Jérome, Neela Nataraj i Devika Shylaja. "Numerical Analysis for the Pure Neumann Control Problem Using the Gradient Discretisation Method". Computational Methods in Applied Mathematics 18, nr 4 (1.10.2018): 609–37. http://dx.doi.org/10.1515/cmam-2017-0054.
Pełny tekst źródłaGraff, Joseph S., Roger L. Davis i John P. Clark. "Computational structural dynamics general solution procedure using finite volumes". Journal of Algorithms & Computational Technology 16 (styczeń 2022): 174830262210840. http://dx.doi.org/10.1177/17483026221084030.
Pełny tekst źródłaRozprawy doktorskie na temat "Numerical analysis : finite volumes"
Tan, Zhijun. "Moving mesh finite volume method and its applications". HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/592.
Pełny tekst źródłaFricke, J. Robert. "Acoustic scattering from elastic ice a finite difference solution /". Woods Hole, Mass. : Woods Hole Oceanographic Institution, 1991. http://catalog.hathitrust.org/api/volumes/oclc/24347157.html.
Pełny tekst źródłaOng, Thanh Hai. "Finite volume schemes for anisotropic and heterogeneous diffusion operators on non-conforming meshes". Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1097/document.
Pełny tekst źródłaWe present a new scheme for the discretization of heterogeneous anisotropic diffusion problems on general meshes. With light assumptions, we show that the algorithm can be written as a cell-centered scheme with a small stencil and that it is convergent for discontinuous tensors. The key point of the proof consists in showing both the strong and the weak consistency of the method. Besides, we study non-linear corrections to correct the FECC scheme, in order to satisfy the discrete maximum principle (DMP).The efficiency of the scheme is demonstrated through numerical tests of the 5th & 6th International Symposium on Finite Volumes for Complex Applications - FVCA 5 & 6. Moreover, the comparison with classical finite volume schemes emphasizes the precision of the method. We also show the good behaviour of the algorithm for nonconforming meshes. In addition, we give some numerical tests to check the existence for the non-linear FECC schemes
Demin, Mikhail. "Finite Volume Methods for Option Pricing". Thesis, Högskolan i Halmstad, Tillämpad matematik och fysik (MPE-lab), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16397.
Pełny tekst źródłaElfarra, Monier Ali Supervisor :. Akmandor İ Sinan. "Two dimensional finite volume weighted essentially non-oscillatory euler schemes with uniform and non-uniform grid coefficients". Ankara : METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12605898/index.pdf.
Pełny tekst źródłaNOVO, MARCELA SILVA. "NUMERICAL ANALYSIS OF ELECTROMAGNETIC WELL-LOGGING TOOLS BY USING FINITE VOLUME METHODS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11478@1.
Pełny tekst źródłaCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
SOCIETY OF EXPLORATION GEOPHYSICISTS FOUNDATION
SOCIETY OF PETROPHYSICISTS & WELL LOG ANALYSTS
O objetivo principal deste trabalho é o desenvolvimento de modelos computacionais para analisar a resposta eletromagnética de ferramentas de perfilagem LWD/MWD em formações geofísicas arbitrárias. Essa modelagem envolve a determinação precisa de campos eletromagnéticos em regiões tridimensionais (3D) complexas e, conseqüentemente, a solução de sistemas lineares não-hermitianos de larga escala. A modelagem numérica é realizada através da aplicação do método dos volumes finitos (FVM) no domínio da freqüência. Desenvolvem-se dois modelos computacionais, o primeiro válido em regiões isotrópicas e o segundo considerando a presença de anisotropias no meio. As equações de Maxwell são resolvidas através de duas formulações distintas: formulação por campos e formulação por potenciais vetor e escalar. A discretização por volumes finitos utiliza um esquema de grades entrelaçadas em coordenadas cilíndricas para evitar erros de aproximação de escada da geometria da ferramenta. Os modelos desenvolvidos incorporam quatro técnicas numéricas para aumentar a eficiência computacional e a precisão do método. As formulações por campos e por potenciais vetor e escalar são comparadas em termos da taxa de convergência e do tempo de processamento em cenários tridimensionais. Os modelos foram validados e testados em cenários tridimensionais complexos, tais como: (i) poços horizontais ou direcionais; (ii) formações não homogêneas com invasões de fluído de perfuração; (iii) formações anisotrópicas e (iv) poços excêntricos. Motivado pela flexibilidade dos modelos e pelos resultados numéricos obtidos em diferentes cenários tridimensionais, estende-se a metodologia para analisar a resposta de ferramentas LWD que empregam antenas inclinadas em relação ao eixo da ferramenta. Tais ferramentas podem prover dados com sensibilidade azimutal, assim como estimativas da anisotropia da formação, auxiliando o geodirecionamento de poços direcionais e horizontais.
The main objective of this work is to develop computational models to analyze electromagnetic logging-while-drilling tool response in arbitrary geophysical formations. This modeling requires the determination of electromagnetic fields in three- dimensional (3-D) complex regions and consequently, the solution of large scale non-hermitian systems. The numerical modeling is done by using Finite Volume Methods (FVM) in the frequency domain. Both isotropic and anisotropic models are developed. Maxwell's equations are solved by using both the field formulation and the coupled vector-scalar potentials formulation. The proposed FVM technique utilizes an edge-based staggered-grid scheme in cylindrical coordinates to avoid staircasing errors on the tool geometry. Four numerical techniques are incorporated in the models in order to increase the computational efficiency and the accuracy of the method. The field formulation and the coupled vector-scalar potentials formulation are compared in terms of their accuracy, convergence rate, and CPU time for three-dimensional environments. The models were validated and tested in 3-D complex environments, such as:(i) horizontal and directional boreholes; (ii) multilayered geophysical formations including mud-filtrate invasions; (iii) anisotropic formations and (iv)eccentric boreholes. The methodology is extended to analyze LWD tools that are constructed with the transmitters and/or receivers tilted with respect to the axis of the drill collar. Such tools can provide improved anisotropy measurements and azimuthal sensitivity to benefit geosteering.
Ferreira, Ivaldo Leão. "Analises numerica, analitica e experimental da macrossegregação inversa na solidificação". [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265592.
Pełny tekst źródłaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-04T03:14:59Z (GMT). No. of bitstreams: 1 Ferreira_IvaldoLeao_D.pdf: 8636771 bytes, checksum: fb3623e9e0a9c93143f4b34ba87844cf (MD5) Previous issue date: 2004
Resumo: o presente trabalho analisa as influências do teor de soluto, do superaquecimento e do coeficiente global de transferência de calor metal/fluido (hg), na macrossegregação inversa durante a solidificação unidirecional vertical ascendente de ligas binárias AI-Cu e ternária AI-Cu-Si. Os perfis experimentais de segregação ao longo dos lingotes para as ligas AI4,5%Cu, AI-6,2%Cu, AI-8,I%Cu e Al-8,I%Cu-3%Si são comparados com as predições teóricas fomecidas por modelos numérico e analítico, com perfis transitórios de (hg) sendo determinados em cada experimento. O modelo analítico é baseado num modelo analítico de transferência de calor [Garcia, 2001], acoplado a uma formulação clássica para a redistribuição local de soluto proposta por Flemings e Nereo (Flemings e Nereo, 1967]. O modelo numérico é aquele proposto por V oller [V oller, 1997], com modificações introduzidas levando em consideração diferentes propriedades termofisicas para as fases líquida e sólida, coeficiente global de transferência de calor metal/fluido variável com o tempo e malha com distribuição de comprimento de nós variável ao longo do domínio, o que garantiu a precisão dos resultados sem aumento excessivo do número de nós. AIém dessas modificações, fez-se necessária à mudança no critério de convergência para melhor representar os gradientes térmicos e taxas de resfriamento. Um modelo semi-analítico para a macrossegregação inversa, baseado na solução por variável de similaridade, é aplicado para validação do modelo numérico. Observa-se que as predições numéricas apresentam boa concordância com as medidas experimentais, e que as predições analíticas, apesar de sua relativa simplicidade, também é capaz de representar satisfatoriamente os resultados experimentais, exceto para condições de elevado superaquecimento. O modelo numérico é aplicado com sucesso para a situação de solidificação de ligas multicomponentes, representada pela liga Al-8,1%Cu-3%Si, onde é observada boa representatividade dos resultados experimentais
Abstract: The present work focuses on the influences of alloy solute content, melt superheat, and meta1/fluid heat transfer coefficients on inverse segregation during upward solidification of AI-Cu and AI-Cu-Si alloys. The experimental segregation profiles of AI4,5 wt % Cu, AI-6,2 wt % Cu, AI-8,1 wt % Cu and AI-8,1 wt % Cu-3 wt % Si alloys are compared with theoretical predictions fumished by analytical and numerica1 models, with transient (hg) profiles being determined in each experimento The analytical model is based on an ana1ytica1 heat transfer model coupled with the classica1loca1 solute redistribution equation proposed by Flemings and Nereo. The numerica1 model is that proposed by V oller, with some changes introduced to take into account different thermophysica1 properties for liquid and solid phases, time variable meta1/fluid interface heat-transfer coefficient, and a variable space grid along the domain in order to assure the accuracy of results without raising the number of nodes. Furthermore, changes in the convergence criterion were necessary to improve the accuracy of the therma1 gradients and solidification rates ca1culated numerlcally. A sophisticated semi-ana1ytica1 solution for the inverse segregation based on the similarity variable is carried out to valida te the numerica1 model. It is observed that the numerical predictions generally conform with the experimental segregation measurements and that the predicted analytical segregation, despite its simplicity, also compares favorably with the experimental scatter except for high melt superheat. The numerical model is successfully applied for a situation of multicomponent alloy solidification, Le., AI-8,1 wt % Cu-3 wt % Si alloy, and it is found be in good agreement with experimental results
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Shcherbakov, Dmitry, i Sylwia Szwaczkiewicz. "Exponential Fitting, Finite Volume and Box Methods in Option Pricing". Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-6108.
Pełny tekst źródłaZhou, Zhiqiang. "Multiple-Scale Numerical Analysis of Composites Based on Augmented Finite Element Method". Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/75.
Pełny tekst źródłaCalhoun, Donna. "A Cartesian grid method for solving the streamfunction vorticity equations in irregular geometries /". Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/6753.
Pełny tekst źródłaKsiążki na temat "Numerical analysis : finite volumes"
International Symposium on Finite Volumes for Complex Applications (5th 2008 Aussois, France). Finite volumes for complex applications V: Proceedings of the 5th International Symposium on Finite Volumes for Complex Applications. Hoboken, NJ: Wiley, 2008.
Znajdź pełny tekst źródłaBaysal, Oktay. An overlapped grid method for multigrid, finite volume/difference flow solvers - MaGGiE. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Znajdź pełny tekst źródłaChristian, Grossmann. Numerical treatment of partial differential equations. Berlin: Springer, 2007.
Znajdź pełny tekst źródła1946-, Chen Zhongying, i Wu Wei 1929-, red. Generalized difference methods for differential equations: Numerical analysis of finite volume methods. New York: M. Dekker, 2000.
Znajdź pełny tekst źródłaJiří, Fürst, Halama Jan, Herbin Raphaèle, Hubert Florence i SpringerLink (Online service), red. Finite Volumes for Complex Applications VI - Problems & Perspectives: FVCA 6, International Symposium, Prague, June 6-10, 2011. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaShima, Eiji. Numerical analysis of multiple element high lift devices by Navier Stokes equation using implicit TVD finite volume method. New York: AIAA, 1988.
Znajdź pełny tekst źródłaCenter, NASA Glenn Research, red. Computational aeroacoustics by the space-time CE/SE method. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaOñate, Eugenio. Structural Analysis with the Finite Element Method Linear Statics: Volume 2. Beams, Plates and Shells. Dordrecht: Springer Netherlands, 2013.
Znajdź pełny tekst źródłaZ, Pirzadeh Shahyar, i Langley Research Center, red. Tetrahedral finite-volume solutions to the Navier-Stokes equations on complex configurations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Znajdź pełny tekst źródłaFrink, Neal T. Tetrahedral finite-volume solutions to the Navier-Stokes equations on complex configurations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Numerical analysis : finite volumes"
Feireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová i Bangwei She. "Mixed Finite Volume – Finite Element Method for the Navier–Stokes System". W Numerical Analysis of Compressible Fluid Flows, 393–418. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_13.
Pełny tekst źródłaBermúdez, A., S. Busto, J. L. Ferrín, L. Saavedra, E. F. Toro i M. E. Vázquez-Cendón. "A Projection Hybrid Finite Volume-ADER/Finite Element Method for Turbulent Navier-Stokes". W Computational Mathematics, Numerical Analysis and Applications, 201–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49631-3_7.
Pełny tekst źródłaFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová i Bangwei She. "Finite Volume Method for the Navier–Stokes System". W Numerical Analysis of Compressible Fluid Flows, 351–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_11.
Pełny tekst źródłaFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová i Bangwei She. "Finite Volume Method for the Complete Euler System". W Numerical Analysis of Compressible Fluid Flows, 307–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_10.
Pełny tekst źródłaFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová i Bangwei She. "Finite Volume Method for the Barotropic Euler System". W Numerical Analysis of Compressible Fluid Flows, 277–306. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_9.
Pełny tekst źródłaFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová i Bangwei She. "Finite Volume Method for the Barotropic Euler System – Revisited". W Numerical Analysis of Compressible Fluid Flows, 377–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_12.
Pełny tekst źródłaMendoza, Joshua, i A. Keith Miller. "Numerical Substructuring Methods in Finite Element Analysis". W Topics in Experimental Dynamic Substructuring, Volume 2, 71–75. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6540-9_7.
Pełny tekst źródłaMaury, Bertrand. "Numerical Analysis of a Finite Element/Volume Penalty Method". W Partial Differential Equations, 167–85. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8758-5_9.
Pełny tekst źródłaBenkhaldoun, Fayssal, i Abdallah Bradji. "Convergence Analysis of a Finite Volume Scheme for a Distributed Order Diffusion Equation". W Numerical Methods and Applications, 59–72. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32412-3_6.
Pełny tekst źródłaChoquet, Catherine, Moussa Mory Diédhiou i Houssein Nasser El Dine. "Numerical Analysis of a Finite Volume Scheme for the Optimal Control of Groundwater Pollution". W Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 467–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43651-3_43.
Pełny tekst źródłaStreszczenia konferencji na temat "Numerical analysis : finite volumes"
Craeye, Christophe, i Xavier Dardenne. "Fast Numerical Analysis of Finite Arrays of Antennas in Finite Dielectric Volumes". W 2007 International Conference on Electromagnetics in Advanced Applications. IEEE, 2007. http://dx.doi.org/10.1109/iceaa.2007.4387367.
Pełny tekst źródłaMoukalled, F., i M. Darwish. "A Coupled Finite Volume Solver for Incompressible Flows". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991028.
Pełny tekst źródłaTouma, Rony, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "Central Unstaggered Finite Volume Methods for Shallow Water Equations". W Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790204.
Pełny tekst źródłaDarwish, M., F. Moukalled, Theodore E. Simos, George Psihoyios, Ch Tsitouras i Zacharias Anastassi. "A Coupled Finite Volume Solver for Compressible Flows". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637752.
Pełny tekst źródłaEgidi, Nadaniela, Josephin Giacomini i Pierluigi Maponi. "Solution strategies for finite elements and finite volumes methods applied to flow and heat transfer problem in U-shaped geothermal exchangers". W INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952281.
Pełny tekst źródłaBradji, Abdallah, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "An Approach to Improve the Convergence Order in Finite Volume and Finite Element Methods". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241269.
Pełny tekst źródłaVoitovich, Tatiana V., i Stefan Vandewalle. "Barycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990990.
Pełny tekst źródłaBillaud, Marie, Gérard Gallice, Boniface Nkonga, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "Stabilized Finite Element Method for Compressible-Incompressible Interface Flows". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241334.
Pełny tekst źródłaReiss, J., J. Sesterhenn, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "Fully Conservative, Skew Symmetric and Compact Finite Difference Schemes". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241451.
Pełny tekst źródłaAntoniadis, A. F., K. H. Iqbal, E. Shapiro, N. Asproulis, D. Drikakis, Theodore E. Simos, George Psihoyios, Ch Tsitouras i Zacharias Anastassi. "Comparison of High-order Finite Volume and Discontinuous Galerkin Methods on 3D Unstructured Grids". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636979.
Pełny tekst źródłaRaporty organizacyjne na temat "Numerical analysis : finite volumes"
Martinez, M. J. Analysis of anelastic flow and numerical treatment via finite elements. Office of Scientific and Technical Information (OSTI), maj 1994. http://dx.doi.org/10.2172/10151480.
Pełny tekst źródłaMeiron, D. I., i P. G. Saffman. Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability. Office of Scientific and Technical Information (OSTI), wrzesień 1987. http://dx.doi.org/10.2172/5585523.
Pełny tekst źródłaChen. PR-244-9827-R03 Preliminary Finite Element Analysis of Local Buckling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 2008. http://dx.doi.org/10.55274/r0011037.
Pełny tekst źródłaIhlenburg, Frank, i Ivo Babuska. Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1994. http://dx.doi.org/10.21236/ada290296.
Pełny tekst źródłaRusso, David, i William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, październik 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Pełny tekst źródłaZhu, Minjie, i Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, kwiecień 2024. http://dx.doi.org/10.55461/gsfh8371.
Pełny tekst źródłaPerez-Rivera, Anthony, Jonathan Trovillion, Peter Stynoski i Jeffrey Ryan. Simulated barge impacts on fiber-reinforced polymers (FRP) composite sandwich panels : dynamic finite element analysis (FEA) to develop force time histories to be used on experimental testing. Engineer Research and Development Center (U.S.), styczeń 2024. http://dx.doi.org/10.21079/11681/48080.
Pełny tekst źródłaChen, Qishi, Joe Zhou, Duane DeGeer, Ola Bjornoy i Richard Verley. JTM13-CCP Collapse of Corroded Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2001. http://dx.doi.org/10.55274/r0011820.
Pełny tekst źródłaHeymsfield, Ernie, i Jeb Tingle. State of the practice in pavement structural design/analysis codes relevant to airfield pavement design. Engineer Research and Development Center (U.S.), maj 2021. http://dx.doi.org/10.21079/11681/40542.
Pełny tekst źródłaGraville. L51764 Hydrogen Cracking in the Heat-Affected Zone of High-Strength Steels-Year 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 1997. http://dx.doi.org/10.55274/r0010170.
Pełny tekst źródła