Gotowa bibliografia na temat „NVIDIA GPGUs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „NVIDIA GPGUs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "NVIDIA GPGUs"
Xu, Kaifeng. "NVIDIAs Research and Development Investment: Impact on Financial Performance and Market Valuation." Advances in Economics, Management and Political Sciences 148, no. 1 (2025): 109–17. https://doi.org/10.54254/2754-1169/2024.ld19178.
Pełny tekst źródłaLiu, Junjing. "A Financial Analysis and Valuation of NVIDIA." Advances in Economics, Management and Political Sciences 148, no. 1 (2025): 137–42. https://doi.org/10.54254/2754-1169/2024.ld19183.
Pełny tekst źródłaBi, Yujiang, Shun Xu, and Yunheng Ma. "Running Qiskit on ROCm Platform." EPJ Web of Conferences 295 (2024): 11022. http://dx.doi.org/10.1051/epjconf/202429511022.
Pełny tekst źródłaZhang, Rui, and Lei Hu. "Research on NVIDIA's Development Strategy." International Journal of Global Economics and Management 5, no. 2 (2024): 79–84. https://doi.org/10.62051/ijgem.v5n2.10.
Pełny tekst źródłaChen, Shujie. "Research on Nvidia Investment Strategies and Analysis." Highlights in Business, Economics and Management 24 (January 22, 2024): 2234–40. http://dx.doi.org/10.54097/vzd0m812.
Pełny tekst źródłaLe, Xi. "The Application of DCF in Company Valuation: Case of NVIDIA." Highlights in Business, Economics and Management 39 (August 8, 2024): 244–51. http://dx.doi.org/10.54097/a50yxz91.
Pełny tekst źródłaBähr, Pascal R., Bruno Lang, Peer Ueberholz, Marton Ady, and Roberto Kersevan. "Development of a hardware-accelerated simulation kernel for ultra-high vacuum with Nvidia RTX GPUs." International Journal of High Performance Computing Applications 36, no. 2 (2021): 141–52. http://dx.doi.org/10.1177/10943420211056654.
Pełny tekst źródłaChen, Dong, Hua You Su, Wen Mei, Li Xuan Wang, and Chun Yuan Zhang. "Scalable Parallel Motion Estimation on Muti-GPU System." Applied Mechanics and Materials 347-350 (August 2013): 3708–14. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3708.
Pełny tekst źródłaLiu, Hui, Bo Yang, and Zhangxin Chen. "Accelerating algebraic multigrid solvers on NVIDIA GPUs." Computers & Mathematics with Applications 70, no. 5 (2015): 1162–81. http://dx.doi.org/10.1016/j.camwa.2015.07.005.
Pełny tekst źródłaLin, Chun-Yuan, Jin Ye, Che-Lun Hung, Chung-Hung Wang, Min Su, and Jianjun Tan. "Constructing a Bioinformatics Platform with Web and Mobile Services Based on NVIDIA Jetson TK1." International Journal of Grid and High Performance Computing 7, no. 4 (2015): 57–73. http://dx.doi.org/10.4018/ijghpc.2015100105.
Pełny tekst źródłaRozprawy doktorskie na temat "NVIDIA GPGUs"
Santos, Paulo Carlos Ferreira dos. "Extração de informações de desempenho em GPUs NVIDIA." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042013-090806/.
Pełny tekst źródłaSubramoniapillai, Ajeetha Saktheesh. "Architectural Analysis and Performance Characterization of NVIDIA GPUs using Microbenchmarking." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1344623484.
Pełny tekst źródłaLoundagin, Justin. "Optimizing Harris Corner Detection on GPGPUs Using CUDA." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1348.
Pełny tekst źródłaAraújo, João Manuel da Silva. "Paralelização de algoritmos de Filtragem baseados em XPATH/XML com recurso a GPUs." Master's thesis, FCT - UNL, 2009. http://hdl.handle.net/10362/2530.
Pełny tekst źródłaSurineni, Sruthikesh. "Performance/Accuracy Trade-offs of Floating-point Arithmetic on Nvidia GPUs| From a Characterization to an Auto-tuner." Thesis, University of Missouri - Columbia, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13850754.
Pełny tekst źródłaYu, Pen-Yung, and 游本永. "Increasing Thread-Level Parallelism with Register Resource Management for NVIDIA GPUs." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/78523353456172674080.
Pełny tekst źródłaChi, Ping-Lin, and 机炳霖. "Simulation of Optical Properties for Thin Film Using CUDA on NVIDIA GPUs." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/23775928600592540874.
Pełny tekst źródłaChen, Wei-Sheng, and 陳威勝. "Hybrid Simulation of Optical Properties for Thin Film Using CUDA on NVIDIA GPUs." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/99410635297475769146.
Pełny tekst źródłaWankhede, Rahul. "Accelerating Estimation of Perfusion Maps in Contrast X-ray Computed Tomography using Many-core CPUs and GPUs." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5826.
Pełny tekst źródłaKsiążki na temat "NVIDIA GPGUs"
Rucci, Enzo. Evaluación de rendimiento y eficiencia energética de sistemas heterogéneos para bioinformática. Editorial de la Universidad Nacional de La Plata (EDULP), 2018. http://dx.doi.org/10.35537/10915/66533.
Pełny tekst źródłaCzęści książek na temat "NVIDIA GPGUs"
Bernstein, Daniel J., Hsieh-Chung Chen, Chen-Mou Cheng, et al. "ECC2K-130 on NVIDIA GPUs." In Progress in Cryptology - INDOCRYPT 2010. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17401-8_23.
Pełny tekst źródłaWang, Mingliang, Hector Klie, Manish Parashar, and Hari Sudan. "Solving Sparse Linear Systems on NVIDIA Tesla GPUs." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01970-8_87.
Pełny tekst źródłaMonakov, Alexander, and Arutyun Avetisyan. "Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03138-0_32.
Pełny tekst źródłaKobayashi, Ryohei, Norihisa Fujita, Yoshiki Yamaguchi, et al. "Accelerating Radiative Transfer Simulation on NVIDIA GPUs with OpenACC." In Parallel and Distributed Computing, Applications and Technologies. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29927-8_27.
Pełny tekst źródłaDavis, Joshua Hoke, Christopher Daley, Swaroop Pophale, Thomas Huber, Sunita Chandrasekaran, and Nicholas J. Wright. "Performance Assessment of OpenMP Compilers Targeting NVIDIA V100 GPUs." In Accelerator Programming Using Directives. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74224-9_2.
Pełny tekst źródłaZhou, Honghui, Ruyi Qin, Zihan Liu, Ying Qian, and Xiaoming Ju. "Optimizing Performance of Image Processing Algorithms on GPUs." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_95.
Pełny tekst źródłaAfanasyev, Ilya V., and Dmitry I. Lichmanov. "Developing Efficient Implementation of Label Propagation Algorithm for Modern NVIDIA GPUs." In Communications in Computer and Information Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64616-5_16.
Pełny tekst źródłaValero-Lara, Pedro, Ivan Martínez-Pérez, Raül Sirvent, Xavier Martorell, and Antonio J. Peña. "NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal Systems Implementation of cuThomasBatch." In Parallel Processing and Applied Mathematics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78024-5_22.
Pełny tekst źródłaTsai, Yuhsiang M., Terry Cojean, and Hartwig Anzt. "Sparse Linear Algebra on AMD and NVIDIA GPUs – The Race Is On." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50743-5_16.
Pełny tekst źródłaReiz, Severin, Tobias Neckel, and Hans-Joachim Bungartz. "Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs." In Parallel Processing and Applied Mathematics. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30442-2_11.
Pełny tekst źródłaStreszczenia konferencji na temat "NVIDIA GPGUs"
Zhao, Zhengji, Brian Austin, Ermal Rrapaj, and Nicholas J. Wright. "Understanding VASP Power Profiles on NVIDIA A100 GPUs." In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2024. https://doi.org/10.1109/scw63240.2024.00189.
Pełny tekst źródłaLi, Xinyi, Ang Li, Bo Fang, Katarzyna Swirydowicz, Ignacio Laguna, and Ganesh Gopalakrishnan. "Discovery of Floating-Point Differences Between NVIDIA and AMD GPUs." In 2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 2024. http://dx.doi.org/10.1109/ccgrid59990.2024.00083.
Pełny tekst źródłaZahid, Anwar Hossain, Ignacio Laguna, and Wei Le. "Testing GPU Numerics: Finding Numerical Differences Between NVIDIA and AMD GPUs." In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2024. https://doi.org/10.1109/scw63240.2024.00077.
Pełny tekst źródłaBois, Karl. "“The Copper Behind Blackwell”: Understanding Today's Copper Scale-up Networks." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.w3a.1.
Pełny tekst źródłaWilfong, Benjamin, Anand Radhakrishnan, Henry A. Le Berre, Steve Abbott, Reuben D. Budiardja, and Spencer H. Bryngelson. "OpenACC offloading of the MFC compressible multiphase flow solver on AMD and NVIDIA GPUs." In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2024. https://doi.org/10.1109/scw63240.2024.00242.
Pełny tekst źródłaYang, Zeyu, Karel Adamek, and Wesley Armour. "Accurate and Convenient Energy Measurements for GPUs: A Detailed Study of NVIDIA GPU’s Built-In Power Sensor." In SC24: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2024. https://doi.org/10.1109/sc41406.2024.00028.
Pełny tekst źródłaCornelius, Jason, Zachary Miles, Anthony Comer, et al. "Long-Range Mars Rotorcraft Design Optimization using Machine Learning." In Vertical Flight Society 81st Annual Forum and Technology Display. The Vertical Flight Society, 2025. https://doi.org/10.4050/f-0081-2025-364.
Pełny tekst źródłaLamb, Chris. "OpenCL for NVIDIA GPUs." In 2009 IEEE Hot Chips 21 Symposium (HCS). IEEE, 2009. http://dx.doi.org/10.1109/hotchips.2009.7478346.
Pełny tekst źródłaArafa, Yehia, Ammar ElWazir, Abdelrahman Elkanishy, et al. "NVIDIA GPGPUs Instructions Energy Consumption." In 2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 2020. http://dx.doi.org/10.1109/ispass48437.2020.00022.
Pełny tekst źródłaBakita, Joshua, and James H. Anderson. "Hardware Compute Partitioning on NVIDIA GPUs*." In 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2023. http://dx.doi.org/10.1109/rtas58335.2023.00012.
Pełny tekst źródłaRaporty organizacyjne na temat "NVIDIA GPGUs"
Elwazir, Ammar, Abdel-Hameed Badawy, Omar Aaziz, and Jeanine Cook. LDMS-GPU: Lightweight Distributed Metric Service (LDMS) for NVIDIA GPGPUs. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1813665.
Pełny tekst źródłaLeinhauser, Matthew, Jeffrey Young, Sergei Bastrakov, Rene Widera, Ronnie Chatterjee, and Sunita Chandrasekaran. Performance Analysis of PIConGPU: Particle-in-Cell on GPUs using NVIDIA’s NSight Systems and NSight Compute. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1761619.
Pełny tekst źródła