Gotowa bibliografia na temat „Omic data”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Omic data”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Omic data"
Oromendia, Ana, Dorina Ismailgeci, Michele Ciofii, Taylor Donnelly, Linda Bojmar, John Jyazbek, Arnaub Chatterjee, David Lyden, Kenneth H. Yu i David Paul Kelsen. "Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study." Journal of Clinical Oncology 38, nr 15_suppl (20.05.2020): e16743-e16743. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16743.
Pełny tekst źródłaUgidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer i Ana Conesa. "MultiBaC: A strategy to remove batch effects between different omic data types". Statistical Methods in Medical Research 29, nr 10 (4.03.2020): 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Pełny tekst źródłaRappoport, Nimrod, i Ron Shamir. "NEMO: cancer subtyping by integration of partial multi-omic data". Bioinformatics 35, nr 18 (30.01.2019): 3348–56. http://dx.doi.org/10.1093/bioinformatics/btz058.
Pełny tekst źródłaCanela, Núria Anela. "A pioneering multi-omics data platform sheds light on the understanding of biological systems". Project Repository Journal 20, nr 1 (4.07.2024): 20–23. http://dx.doi.org/10.54050/prj2021863.
Pełny tekst źródłaLancaster, Samuel M., Akshay Sanghi, Si Wu i Michael P. Snyder. "A Customizable Analysis Flow in Integrative Multi-Omics". Biomolecules 10, nr 12 (27.11.2020): 1606. http://dx.doi.org/10.3390/biom10121606.
Pełny tekst źródłaMorota, Gota. "30 Mutli-omic data integration in quantitative genetics". Journal of Animal Science 97, Supplement_2 (lipiec 2019): 15. http://dx.doi.org/10.1093/jas/skz122.027.
Pełny tekst źródłaEscriba-Montagut, Xavier, Yannick Marcon, Augusto Anguita-Ruiz, Demetris Avraam, Jose Urquiza, Andrei S. Morgan, Rebecca C. Wilson, Paul Burton i Juan R. Gonzalez. "Federated privacy-protected meta- and mega-omics data analysis in multi-center studies with a fully open-source analytic platform". PLOS Computational Biology 20, nr 12 (9.12.2024): e1012626. https://doi.org/10.1371/journal.pcbi.1012626.
Pełny tekst źródłaMeunier, Lea, Guillaume Appe, Abdelkader Behdenna, Valentin Bernu, Helia Brull Corretger, Prashant Dhillon, Eleonore Fox i in. "Abstract 6209: From data disparity to data harmony: A comprehensive pan-cancer omics data collection". Cancer Research 84, nr 6_Supplement (22.03.2024): 6209. http://dx.doi.org/10.1158/1538-7445.am2024-6209.
Pełny tekst źródłaQuackenbush, John. "Data standards for 'omic' science". Nature Biotechnology 22, nr 5 (maj 2004): 613–14. http://dx.doi.org/10.1038/nbt0504-613.
Pełny tekst źródłaBoekel, Jorrit, John M. Chilton, Ira R. Cooke, Peter L. Horvatovich, Pratik D. Jagtap, Lukas Käll, Janne Lehtiö, Pieter Lukasse, Perry D. Moerland i Timothy J. Griffin. "Multi-omic data analysis using Galaxy". Nature Biotechnology 33, nr 2 (luty 2015): 137–39. http://dx.doi.org/10.1038/nbt.3134.
Pełny tekst źródłaRozprawy doktorskie na temat "Omic data"
Guan, Xiaowei. "Bioinformatics Approaches to Heterogeneous Omic Data Integration". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1340302883.
Pełny tekst źródłaXiao, Hui. "Network-based approaches for multi-omic data integration". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289716.
Pełny tekst źródłaZuo, Yiming. "Differential Network Analysis based on Omic Data for Cancer Biomarker Discovery". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78217.
Pełny tekst źródłaPh. D.
Tsai, Tsung-Heng. "Bayesian Alignment Model for Analysis of LC-MS-based Omic Data". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64151.
Pełny tekst źródłaPh. D.
Ruffalo, Matthew M. "Algorithms for Constructing Features for Integrated Analysis of Disparate Omic Data". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449238712.
Pełny tekst źródłaElhezzani, Najla Saad R. "New statistical methodologies for improved analysis of genomic and omic data". Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/new-statistical-methodologies-for-improved-analysis-of-genomic-and-omic-data(eb8d95f4-e926-4c54-984f-94d86306525a).html.
Pełny tekst źródłaElsheikh, Samar Salah Mohamedahmed. "Integration of multi-omic data and neuroimaging characteristics in studying brain related diseases". Doctoral thesis, Faculty of Health Sciences, 2020. http://hdl.handle.net/11427/32609.
Pełny tekst źródłaEhrenberger, Tobias. "Cancer systems biology : functional insights and therapeutic strategies for medulloblastoma from omic data integration". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123062.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 151-167).
Medulloblastoma (MB) is a chiefly pediatric cancer of the cerebellum that has been studied extensively using genomic, epigenomic, and transcriptomic data. It comprises at least four molecularly distinct subgroups: WNT, SHH, Group 3, and Group 4. Despite the detailed characterization of MB, many disease-driving events remain to be elucidated and therapeutic targets to be nominated. In this thesis, we describe three studies that contribute to a better understanding of this devastating disease: First, we describe a study that aims to fully describe the genomic landscape in the largest medulloblastoma cohort to date, using 491 sequenced MB tumors and 1,256 epigenetically analyzed cases. This work describes subgroup-specific driver alterations including previously unappreciated actionable targets; and, based on epigenetic data, identifies further heterogeneity within Group 3 and Group 4 tumors. Second, we focus on the proteomes and phospho-proteomes of 45 medulloblastoma samples.
We identified distinct pathways associated with two subsets of SHH tumors that showed robustly distinct proteomes, but similar transcriptomes, and found post-translational modifications of MYC that are associated with poor outcomes in Group 3 tumors. We also found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. This study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies. Third, we characterize the metabolomic space of MB on largely the same 45 tumors as used in the proteome-focused study. Here, we present preliminary insights from derived from integrative network and other analyses. We find that MB consensus subgroups are preserved in metabolic space, and that certain classes of metabolites are elevated in MYC-activated MB.
We also show that, similar to other cancers, a previously described gain-of-function mutation in IDH1 may cause elevated 2-hydroxyglutarate levels in MB. The work described in this thesis significantly enhances previous knowledge of medulloblastoma and its subgroups, and provides insights that may aid in the development of medulloblastoma therapies in the near future.
by Tobias Ehrenberger.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering
Curti, Nico. "Implementazione e benchmarking dell'algoritmo QDANet PRO per l'analisi di big data genomici". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12018/.
Pełny tekst źródłaArsenteva, Polina. "Statistical modeling and analysis of radio-induced adverse effects based on in vitro and in vivo data". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK074.
Pełny tekst źródłaIn this work we address the problem of adverse effects induced by radiotherapy on healthy tissues. The goal is to propose a mathematical framework to compare the effects of different irradiation modalities, to be able to ultimately choose those treatments that produce the minimal amounts of adverse effects for potential use in the clinical setting. The adverse effects are studied in the context of two types of data: in terms of the in vitro omic response of human endothelial cells, and in terms of the adverse effects observed on mice in the framework of in vivo experiments. In the in vitro setting, we encounter the problem of extracting key information from complex temporal data that cannot be treated with the methods available in literature. We model the radio-induced fold change, the object that encodes the difference in the effect of two experimental conditions, in the way that allows to take into account the uncertainties of measurements as well as the correlations between the observed entities. We construct a distance, with a further generalization to a dissimilarity measure, allowing to compare the fold changes in terms of all the important statistical properties. Finally, we propose a computationally efficient algorithm performing clustering jointly with temporal alignment of the fold changes. The key features extracted through the latter are visualized using two types of network representations, for the purpose of facilitating biological interpretation. In the in vivo setting, the statistical challenge is to establish a predictive link between variables that, due to the specificities of the experimental design, can never be observed on the same animals. In the context of not having access to joint distributions, we leverage the additional information on the observed groups to infer the linear regression model. We propose two estimators of the regression parameters, one based on the method of moments and the other based on optimal transport, as well as the estimators for the confidence intervals based on the stratified bootstrap procedure
Książki na temat "Omic data"
Azuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010.
Znajdź pełny tekst źródłaAzuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010.
Znajdź pełny tekst źródłaAzuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010.
Znajdź pełny tekst źródłaMayer, Bernd, red. Bioinformatics for Omics Data. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-027-0.
Pełny tekst źródłaNing, Kang, red. Methodologies of Multi-Omics Data Integration and Data Mining. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8210-1.
Pełny tekst źródłaAlkhateeb, Abedalrhman, i Luis Rueda, red. Machine Learning Methods for Multi-Omics Data Integration. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-36502-7.
Pełny tekst źródłaTieri, Paolo, Christine Nardini i Jennifer Elizabeth Dent, red. Multi-omic Data Integration. Frontiers Media SA, 2015. http://dx.doi.org/10.3389/978-2-88919-648-7.
Pełny tekst źródłaRomualdi, Chiara, Enrica Calura, Davide Risso, Sampsa Hautaniemi i Francesca Finotello, red. Multi-omic Data Integration in Oncology. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88966-151-0.
Pełny tekst źródłaData Analysis for Omic Sciences: Methods and Applications. Elsevier, 2018. http://dx.doi.org/10.1016/s0166-526x(18)x0004-x.
Pełny tekst źródłaJaumot, Joaquim, Carmen Bedia i Romà Tauler. Data Analysis for Omic Sciences: Methods and Applications. Elsevier, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Omic data"
Saitou, Naruya. "Omic Data Collection". W Introduction to Evolutionary Genomics, 281–88. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5304-7_12.
Pełny tekst źródłaMason, Christopher E., Sandra G. Porter i Todd M. Smith. "Characterizing Multi-omic Data in Systems Biology". W Systems Analysis of Human Multigene Disorders, 15–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8778-4_2.
Pełny tekst źródłaXu, Ying, Juan Cui i David Puett. "Omic Data, Information Derivable and Computational Needs". W Cancer Bioinformatics, 41–63. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1381-7_2.
Pełny tekst źródłaZou, Yan. "Analyzing Multi-Omic Data with Integrative Platforms". W Integrative Bioinformatics, 377–86. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6795-4_18.
Pełny tekst źródłaWarrenfeltz, Susanne, i Jessica C. Kissinger. "Accessing Cryptosporidium Omic and Isolate Data via CryptoDB.org". W Methods in Molecular Biology, 139–92. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9748-0_10.
Pełny tekst źródłaReverter, Ferran, Esteban Vegas i Josep M. Oller. "Kernel Conditional Embeddings for Associating Omic Data Types". W Bioinformatics and Biomedical Engineering, 501–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78723-7_43.
Pełny tekst źródłaKalapanulak, Saowalak, Treenut Saithong i Chinae Thammarongtham. "Networking Omic Data to Envisage Systems Biological Regulation". W Advances in Biochemical Engineering/Biotechnology, 121–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/10_2016_38.
Pełny tekst źródłaXu, Ying, Juan Cui i David Puett. "Elucidation of Cancer Drivers Through Comparative Omic Data Analyses". W Cancer Bioinformatics, 113–47. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1381-7_5.
Pełny tekst źródłaWarrenfeltz, Susanne, i Jessica C. Kissinger. "Correction to: Accessing Cryptosporidium Omic and Isolate Data via CryptoDB.org". W Methods in Molecular Biology, C1. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-9748-0_22.
Pełny tekst źródłaBhattacharya, Surajit, i Heather Gordish-Dressman. "Guidelines for Bioinformatics and the Statistical Analysis of Omic Data". W Omics Approaches to Understanding Muscle Biology, 45–75. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9802-9_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Omic data"
Dey, Anirban, Kaushik Das Sharma, Pritha Bhattacharjee i Amitava Chatterjee. "A Voting based Assimilation Method for the Winning Neurons in Multi-Level SOM to Cluster the Convoluted Biomarkers of a Time Varying ‘Omic Data". W 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725375.
Pełny tekst źródłaChong, Darren, Sonit Singh i Arcot Sowmya. "Spectrogram-Based Imagification Applying Deep Learning on Omics Data". W 2024 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 477–84. IEEE, 2024. https://doi.org/10.1109/dicta63115.2024.00076.
Pełny tekst źródłaWolfgang, Seth, Skyler Ruiter, Marc Tunnell, Timothy Triche, Erin Carrier i Zachary DeBruine. "Value-Compressed Sparse Column (VCSC): Sparse Matrix Storage for Single-cell Omics Data". W 2024 IEEE International Conference on Big Data (BigData), 4952–58. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825091.
Pełny tekst źródłaYao, Zhi-Cheng, Zi Liu, Wei-Zhong Lin i Xuan Xiao. "Clustering of Drug Side Effects Based on Multi-Omics Data". W 2024 2nd International Conference on Computer, Vision and Intelligent Technology (ICCVIT), 1–7. IEEE, 2024. https://doi.org/10.1109/iccvit63928.2024.10872593.
Pełny tekst źródłaLi, Qi, Jian-Wei Su i Wen-Hui Wu. "Clustering Single-Cell Multi-Omics Data with Graph Contrastive Learning". W 2024 International Conference on Machine Learning and Cybernetics (ICMLC), 239–44. IEEE, 2024. https://doi.org/10.1109/icmlc63072.2024.10935198.
Pełny tekst źródłaShi, Tianyi, Xiucai Ye, Dong Huang i Tetsuya Sakurai. "Selecting interpretable features for cancer subtyping on multi-omics data". W 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1155–60. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821783.
Pełny tekst źródłaMishra, Soumya Ranjan, Sachikanta Dash, Sasmita Padhy, Naween Kumar i Yajnaseni Dash. "Integrating Multi-Omics Data for Advanced Diabetes Prediction and Understanding". W 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 1447–53. IEEE, 2024. https://doi.org/10.1109/ic3i61595.2024.10828970.
Pełny tekst źródłaCiortan, Madalina, i Matthieu Defrance. "Optimization algorithm for omic data subspace clustering". W CSBio2021: The 12th International Conference on Computational Systems-Biology and Bioinformatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3486713.3486742.
Pełny tekst źródłaZuo, Yiming, Guoqiang Yu, Chi Zhang i Habtom W. Ressom. "A new approach for multi-omic data integration". W 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2014. http://dx.doi.org/10.1109/bibm.2014.6999157.
Pełny tekst źródłaGlass, Kimberly. "Using Multi-Omic Data to Model Gene Regulatory Networks". W Genetoberfest 2023. ScienceOpen, 2023. http://dx.doi.org/10.14293/gof.23.03.
Pełny tekst źródłaRaporty organizacyjne na temat "Omic data"
Mitchell, Hugh, i Jennifer Kyle. Full Integration of Lipidomics Data into Multi-OMIC Functional Enrichment. Office of Scientific and Technical Information (OSTI), listopad 2019. http://dx.doi.org/10.2172/1986189.
Pełny tekst źródłaHuang, Lei, Meng Song, Hui Shen, Huixiao Hong, Ping Gong, Deng Hong-Wen i Zhang Chaoyang. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), luty 2024. http://dx.doi.org/10.21079/11681/48221.
Pełny tekst źródłaIudicone, Daniele, i Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Pełny tekst źródłaSanderson, William. 'Omics and Big Data in Harmful Algal Bloom Research. Office of Scientific and Technical Information (OSTI), sierpień 2024. http://dx.doi.org/10.2172/2438485.
Pełny tekst źródłaHafen, Ryan, Lisa Bramer, Lee Ann McCue, Rachel Richardson i Chris Ebsch. MODE: The Multi-Omics Data Exploration Platform Phase I Final Technical Report. Office of Scientific and Technical Information (OSTI), grudzień 2019. http://dx.doi.org/10.2172/1630300.
Pełny tekst źródłaWheeler, Travis. Machine learning approaches for integrating multi-omics data to expand microbiome annotation. Office of Scientific and Technical Information (OSTI), kwiecień 2024. http://dx.doi.org/10.2172/2331432.
Pełny tekst źródłaEngel, Jasper, i Hilko van der Voet. G-TwYST harmonisation of statistical methods for use of omics data in food safety assessment. Wageningen: Biometris, Wageningen University & Research, 2018. http://dx.doi.org/10.18174/455159.
Pełny tekst źródłaWrinn, Michael. Platform for efficient large-scale storage and analysis of multi-omics data in plant and microbial systems. Final Technical Report. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1659436.
Pełny tekst źródłaSolis-Lemus, Claudia. Harnessing the power of big omics data: Novel statistical tools to study the role of microbial communities in fundamental biological processes. Office of Scientific and Technical Information (OSTI), styczeń 2024. http://dx.doi.org/10.2172/2274956.
Pełny tekst źródłaHolmes, Rebecca, Keeley Blackie, Ilya Ivlev i Erick H. Turner. Enhancing Systematic Review Methods by Incorporating Unpublished Drug Trials. Agency for Healthcare Research and Quality (AHRQ), styczeń 2025. https://doi.org/10.23970/ahrqepcwhitepaperenhancing.
Pełny tekst źródła