Gotowa bibliografia na temat „Oscillator flows”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Oscillator flows”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Oscillator flows"
Portillo, Daniel J., Eugene Hoffman, Matt Garcia, Elijah LaLonde, Christopher Combs i R. Lyle Hood. "The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator". Fluids 7, nr 7 (21.07.2022): 251. http://dx.doi.org/10.3390/fluids7070251.
Pełny tekst źródłaShardt, Orest, Hassan Masoud i Howard A. Stone. "Oscillatory Marangoni flows with inertia". Journal of Fluid Mechanics 803 (19.08.2016): 94–118. http://dx.doi.org/10.1017/jfm.2016.507.
Pełny tekst źródłaKovacic, Ivana, Matthew Cartmell i Miodrag Zukovic. "Mixed-mode dynamics of certain bistable oscillators: behavioural mapping, approximations for motion and links with van der Pol oscillators". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, nr 2184 (grudzień 2015): 20150638. http://dx.doi.org/10.1098/rspa.2015.0638.
Pełny tekst źródłaLUO, ALBERT C. J., i MOZHDEH S. FARAJI MOSADMAN. "SINGULARITY, SWITCHABILITY AND BIFURCATIONS IN A 2-DOF, PERIODICALLY FORCED, FRICTIONAL OSCILLATOR". International Journal of Bifurcation and Chaos 23, nr 03 (marzec 2013): 1330009. http://dx.doi.org/10.1142/s0218127413300097.
Pełny tekst źródłaVodinchar, Gleb. "Hereditary Oscillator Associated with the Model of a Large-Scale αω-Dynamo". Mathematics 8, nr 11 (19.11.2020): 2065. http://dx.doi.org/10.3390/math8112065.
Pełny tekst źródłaSerrar, Abderrahim, Mohamed El Khlifi i Azeddine Kourta. "Characterisation and comparison of unsteady actuators: a fluidic oscillator and a sweeping jet". International Journal of Numerical Methods for Heat & Fluid Flow 32, nr 4 (4.10.2021): 1237–54. http://dx.doi.org/10.1108/hff-07-2021-0474.
Pełny tekst źródłaKHEIRANDISH, F., i M. AMOOSHAHI. "RADIATION REACTION AND QUANTUM DAMPED HARMONIC OSCILLATOR". Modern Physics Letters A 20, nr 39 (21.12.2005): 3025–34. http://dx.doi.org/10.1142/s0217732305018384.
Pełny tekst źródłaMa, Zhao Wei, Tiang Jiang Hu, Han Zhou, Guang Ming Wang i Dai Bing Zhang. "Modeling of Fish Adaptive Behaviors in Unsteady Flows". Applied Mechanics and Materials 461 (listopad 2013): 313–19. http://dx.doi.org/10.4028/www.scientific.net/amm.461.313.
Pełny tekst źródłaBILLINGHAM, JOHN. "Modelling the response of a vibrating-element density meter in a two-phase mixture". Journal of Fluid Mechanics 340 (10.06.1997): 343–60. http://dx.doi.org/10.1017/s0022112097005600.
Pełny tekst źródłaCang, Shijian, Yueyue Shan i Zenghui Wang. "Conservative dynamics in a novel class of 3D generalized thermostatted systems". Chaos: An Interdisciplinary Journal of Nonlinear Science 32, nr 8 (sierpień 2022): 083143. http://dx.doi.org/10.1063/5.0101570.
Pełny tekst źródłaRozprawy doktorskie na temat "Oscillator flows"
Barbagallo, Alexandre. "Model reduction and closed-loop control of oscillator and noise-amplifier flows". Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/65/49/30/PDF/Barbagallo_PhDThesis.pdf.
Pełny tekst źródłaCe travail est consacré au contrôle en boucle fermée des perturbations se développant linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et amplificateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur un modèle d'ordre réduit de l'écoulement obtenu par projection de Petrov-Galerkin. La stabilisation d'un écoulement de cavité de type oscillateur est traitée dans une première partie. Il est montré que la totalité de la partie instable de l'écoulement (les modes globaux instables) ainsi que la relation entrée-sortie (action de l'actionneur sur le capteur) de la partie stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux, modes POD et modes BPOD sont successivement évalués comme bases de projection pour modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l'écoulement que lorsque l'instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En revanche, les modes POD et plus particulièrement BPOD sont capable d'extraire la dynamique entrée-sortie stable et permettent de stabiliser efficacement l'écoulement. La seconde partie de ce travail est consacrée à la réduction de l'amplification des perturbations sur une marche descendante. L'influence de la localisation du capteur et de la fonctionnelle de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler une simulation non-linéaire avec un modèle linéaire est évaluée
Salmon, Mathieu. "closed-loop control of finite amplitude perturbations : application to sub- and super-critical flow-bifurcations". Electronic Thesis or Diss., Paris, ENSAM, 2024. http://www.theses.fr/2024ENAME072.
Pełny tekst źródłaCurrent control optimisation methods struggle to stabilize a base flow in the case of finite amplitude perturbations. A boundary called edge of chaos separates into two regions the phase space of a flow which transitions subcritically to turbulence. The turbulent basin of attraction incorporates the perturbations whose energy is sufficient to trigger transition to turbulence, the laminar basin of attraction is the set of initial perturbations which are relaminarized. Such situation with two coexisting local attractors can also be encountered in flow cases outside the scope of transition to turbulence. A cylinder flow at Re = 100 exhibits a globally unstable base flow and a stable limit-cycle. Two basins of attraction emerge from the local stabilization of the base flow by a linear controller optimized on the linearized Navier-Stokes equations. We seek in this study to increase the basin of attraction of the base flow. The novelty of this work lies in the choice of the functional to be optimised with control. Indeed, the optimisation targets the energy of a perturbation located on the boundary of the two basins of attraction. We consider subcritical transition to turbulence using the well-known SSP model of Waleffe, a reduced-order model of the Navier-Stokes equations with only four degrees of freedom. The control methods elaboratored in this work are effective to induce a growth of the ”laminar” basin of attraction. In the cylinder flow, the robustness of an initial controller to finite amplitude perturbations is increased in a chosen direction of the phase space
Wang, Jianhong. "Oscillatory flows round combinations of cylinders". Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/13196.
Pełny tekst źródłaWybrow, M. F. "Oscillatory flows about elliptic and circular cylinders". Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389229.
Pełny tekst źródłaWijetunge, Janaka Jayasekera. "Velocity measurements in oscillatory and steady flows". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627385.
Pełny tekst źródłaAl-Asmi, Khalfan. "Vortex shedding in oscillatory flow". Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/842864/.
Pełny tekst źródłaDick, Jennifer Ellen. "Sediment transport in oscillatory flow". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235836.
Pełny tekst źródłaStephens, Gerard Groves. "Suspension polymerisation in oscillatory flow". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627184.
Pełny tekst źródłaTait, Nicole Lynn. "Recovery factors in zero-mean internal oscillatory flows". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA306233.
Pełny tekst źródła"December 1995." Thesis advisor(s): Ashok Gopinath, Oscar Biblarz. Bibliography: p. 61. Also available online.
Krishna, Vikas. "Numerical simulation of vortex shedding in oscillatory flows". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq25859.pdf.
Pełny tekst źródłaKsiążki na temat "Oscillator flows"
G, Friedman, Simon T. W i United States. National Aeronautics and Space Administration., red. Fluid mechanics experiments in oscillatory flow. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaAmin, Norsarahaida. Oscillation-induced mean flows and heat transfer. Norwich: University of East Anglia, 1989.
Znajdź pełny tekst źródłaCoward, Adrian V. Stability of oscillatory two phase Couette flow. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Znajdź pełny tekst źródłaT, Papageorgiou Demetrios, i Langley Research Center, red. Stability of oscillatory two phase coutette flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaCobbin, Adrian Matthew. Viscous forces on cylindrical bodies in attached turbulent oscillatory flows. Manchester: University of Manchester, 1996.
Znajdź pełny tekst źródłaG, Allan Brian, i Institute for Computer Applications in Science and Engineering., red. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Znajdź pełny tekst źródłaG, Allan Brian, i Institute for Computer Applications in Science and Engineering., red. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Znajdź pełny tekst źródłaG, Allan Brian, Institute for Computer Applications in Science and Engineering. i Langley Research Center, red. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: Institute for Computer Applications in Science and Engineering, Langley Research Center, 2000.
Znajdź pełny tekst źródłaCirovic, Srdjan. Characterizing flow-induced oscillation in a mechanical trachea. Ottawa: National Library of Canada, 1996.
Znajdź pełny tekst źródłaSarpkaya, Turgut. In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers. Monterey, Calif: Naval Postgraduate School, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Oscillator flows"
James, J., G. Joseph, A. Magaña i B. Mena. "Oscillatory Granular Flows". W Progress and Trends in Rheology V, 276–77. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-51062-5_128.
Pełny tekst źródłaLi, Sicheng, i Jinjun Wang. "Frequency Effect on Properties of Turbulent/Non-turbulent Interface in Separated and Reattaching Flows Past an Oscillating Fence". W IUTAM Bookseries, 182–93. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78151-3_14.
Pełny tekst źródłaWesterhof, Nicolaas, Nikolaos Stergiopulos i Mark I. M. Noble. "Oscillatory Flow Theory". W Snapshots of Hemodynamics, 41–43. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6363-5_8.
Pełny tekst źródłaWesterhof, Nicolaas, Nikolaos Stergiopulos, Mark I. M. Noble i Berend E. Westerhof. "Oscillatory Flow Theory". W Snapshots of Hemodynamics, 47–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91932-4_8.
Pełny tekst źródłaHolzbecher, Ekkehard O. "Oscillatory Convection". W Modeling Density-Driven Flow in Porous Media, 129–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58767-2_7.
Pełny tekst źródłaBearman, P. W., X. W. Lin i P. R. Mackwood. "Prediction of vortex-induced oscillation of cylinders in oscillatory flow". W Hydroelasticity in Marine Technology, 3–16. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203751503-2.
Pełny tekst źródłaMottaghi, Sohrob, Rene Gabbai i Haym Benaroya. "Lagrangian Flow-Oscillator Models". W An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 95–142. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_5.
Pełny tekst źródłaMottaghi, Sohrob, Rene Gabbai i Haym Benaroya. "Eulerian Flow-Oscillator Models". W An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 189–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_7.
Pełny tekst źródłaRibberink, Jan S., Jebbe J. van der Werf i Tom O’Donoghue. "Sand motion induced by oscillatory flows: sheet flow and vortex ripples". W ERCOFTAC Series, 3–14. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6218-6_1.
Pełny tekst źródłaArwatz, Gilad, Ilan Fono i Avi Seifert. "Suction and Oscillatory Blowing Actuator". W IUTAM Symposium on Flow Control and MEMS, 33–44. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6858-4_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Oscillator flows"
Shakouchi, Toshihiko. "Gas Absorption, Aeration, by Fluidic Oscillator Operated by Gas-Liquid Two-Phase Flow". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45132.
Pełny tekst źródłaChen, Chiko, Jing-Tang Yang i Chien-Hung Ho. "A Novel Asymmetric Microfluidic Oscillator". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79269.
Pełny tekst źródłaMozgovoi, Yury D., i Sergei A. Khritkin. "Radiation of multibeam microwave generator on electron-oscillator flows". W 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289678.
Pełny tekst źródłaMorimoto, Yuichiro, Kenji Kawamata, Haruki Madarame i Koji Okamoto. "Bifurcation of Water Column Oscillator Behavior Simulating Reactor Safety System: 1st Report, Experiment". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32555.
Pełny tekst źródłaMozgovoi, Yury D., i Sergei A. Khritkin. "Phase focusing and synchronization of microwave generator with electron-oscillator flows". W 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289645.
Pełny tekst źródłaCivrais, Clément H. B., Craig White i René Steijl. "Influence of anharmonic oscillator model for flows over a cylindrical body". W 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0187445.
Pełny tekst źródłaGomez, Mateo, Mikhail N. Slipchenko, Steven F. Son i Terrence R. Meyer. "Burst-Mode Noncollinear Optical Parametric Oscillator". W Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.ltu5b.3.
Pełny tekst źródłaMudunuru, M. K., M. Shabouei i K. B. Nakshatrala. "On Local and Global Species Conservation Errors for Nonlinear Ecological Models and Chemical Reacting Flows". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52760.
Pełny tekst źródłaFuchiwaki, Masaki, i Surya Raghu. "Flow Structure Formed by a Sweeping Jet Ejected Into a Main Flow". W ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83045.
Pełny tekst źródłaLuo, Albert C. J., i Mehul T. Patel. "Complex Motions in a Periodically Forced Oscillator With Multiple Discontinuities". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34872.
Pełny tekst źródłaRaporty organizacyjne na temat "Oscillator flows"
Ayoul-Guilmard, Q., F. Nobile, S. Ganesh, M. Nuñez, R. Tosi, C. Soriano i R. Rosi. D5.5 Report on the application of multi-level Monte Carlo to wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.03.
Pełny tekst źródłaTelionis, D. P., i T. E. Diller. Heat transfer in oscillatory flow: Final report. Office of Scientific and Technical Information (OSTI), listopad 1986. http://dx.doi.org/10.2172/6908819.
Pełny tekst źródłaRestrepo, Juan M. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report. Office of Scientific and Technical Information (OSTI), wrzesień 2008. http://dx.doi.org/10.2172/953697.
Pełny tekst źródłaSeume, J., G. Friedman i T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/10181069.
Pełny tekst źródłaHowle, Laurens E. Enhancement of Oscillatory Flap Propulsors for Low Speed Flows in Water. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2010. http://dx.doi.org/10.21236/ada545931.
Pełny tekst źródłaInc., Kellogg Brown and Root. L51989 Submarine Pipeline On-Bottom Stability-Volume 1-Analysis and Design Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2002. http://dx.doi.org/10.55274/r0011168.
Pełny tekst źródłaSchilling, O., i M. Latini. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), czerwiec 2004. http://dx.doi.org/10.2172/15014460.
Pełny tekst źródłaRosa, M. P., i M. Z. Podowski. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors. Office of Scientific and Technical Information (OSTI), wrzesień 1995. http://dx.doi.org/10.2172/107760.
Pełny tekst źródłaLatini, M., i O. Schilling. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), styczeń 2005. http://dx.doi.org/10.2172/875932.
Pełny tekst źródłaNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano i R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Pełny tekst źródła