Artykuły w czasopismach na temat „Oxygen Gas Sensors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oxygen Gas Sensors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sembodo, Shafanda Nabil, Nazrul Effendy, Kenny Dwiantoro, and Nidlom Muddin. "Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (2022): 3044. http://dx.doi.org/10.11591/ijece.v12i3.pp3044-3050.
Pełny tekst źródłaZhang, Mao Lin, Tao Ning, and Yu Hong Yang. "Gas Response Properties of Noble Metal Modified TiO2 Gas Sensor." Advanced Materials Research 706-708 (June 2013): 126–29. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.126.
Pełny tekst źródłaDuan, Chao, Lejun Zhang, Zhaoxi Wu, Xu Wang, Meng Meng, and Maolin Zhang. "Study on the Deterioration Mechanism of Pb on TiO2 Oxygen Sensor." Micromachines 14, no. 1 (2023): 156. http://dx.doi.org/10.3390/mi14010156.
Pełny tekst źródłaSun, Jingxia, Aimin Zhang, Guoqiang Gong, and Jian Jiang. "Study on calibration period of Gas Sensor in exercise Pulmonary Function instrument." Modern Electronic Technology 2, no. 3 (2018): 66. http://dx.doi.org/10.26549/met.v2i3.1133.
Pełny tekst źródłaLiu, Jianqiao, Wanqiu Wang, Zhaoxia Zhai, et al. "Influence of Oxygen Vacancy Behaviors in Cooling Process on Semiconductor Gas Sensors: A Numerical Analysis." Sensors 18, no. 11 (2018): 3929. http://dx.doi.org/10.3390/s18113929.
Pełny tekst źródłaRuss, Tamara, Joseph R. Stetter, David Peaslee, Vinay Patel, Firouzeh Mohadjerani, and Edward F. Stetter. "RTILs as Electrolytes in Electrochemical Gas Sensors for O2 and Other Gases." ECS Meeting Abstracts MA2023-01, no. 52 (2023): 2603. http://dx.doi.org/10.1149/ma2023-01522603mtgabs.
Pełny tekst źródłaAgustinur, Satya Cantika, Khaled Issa Khalifa, Meta Yantidewi, and Utama Alan Deta. "Literature Review: Air Oxygen Level Monitoring System." International Journal of Research and Community Empowerment 1, no. 2 (2023): 62–70. http://dx.doi.org/10.58706/ijorce.v1n2.p62-70.
Pełny tekst źródłaVasiliev, Alexey, Alexey Shaposhnik, Oleg Kul, and Artem Mokrushin. "The Role of Convection and Size Effects in Microhotplate Heat Exchange: Semiconductor and Thermomagnetic Gas Sensors." Sensors 25, no. 9 (2025): 2830. https://doi.org/10.3390/s25092830.
Pełny tekst źródłaShafanda, Nabil Sembodo, Effendy Nazrul, Dwiantoro Kenny, and Muddin Nidlom. "Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (2022): 3044–50. https://doi.org/10.11591/ijece.v12i3.pp3044-3050.
Pełny tekst źródłaMaskell, W. C., and B. C. H. Steele. "Solid state potentiometric oxygen gas sensors." Journal of Applied Electrochemistry 16, no. 4 (1986): 475–89. http://dx.doi.org/10.1007/bf01006843.
Pełny tekst źródłaTutunea, Dragos, Ilie Dumitru, Oana Victoria Oţăt, Laurentiu Racila, Ionuţ Daniel Geonea, and Claudia Cristina Rotea. "Oxygen Sensor Testing for Automotive Applications." Applied Mechanics and Materials 896 (February 2020): 249–54. http://dx.doi.org/10.4028/www.scientific.net/amm.896.249.
Pełny tekst źródłaShu, Lin, Xuemin Wang, Dawei Yan, Long Fan, and Weidong Wu. "The Investigation of High-Temperature SAW Oxygen Sensor Based on ZnO Films." Materials 12, no. 8 (2019): 1235. http://dx.doi.org/10.3390/ma12081235.
Pełny tekst źródłaHendryani, Atika, Vita Nurdinawati, and Nashrul Dharma. "Design of Manifold with Pressure Controller for Automatic Exchange of Oxygen Gas Cylinders in Hospital." TEKNIK 42, no. 1 (2021): 45–51. http://dx.doi.org/10.14710/teknik.v42i1.33127.
Pełny tekst źródłaTorkamani Cheriani, Mahmoud, and Ali Mirzaei. "Plasma-Treated Nanostructured Resistive Gas Sensors: A Review." Sensors 25, no. 7 (2025): 2307. https://doi.org/10.3390/s25072307.
Pełny tekst źródłaSricharoen, C., T. Waritananta, N. Wattanavicheana, R. Jaisuthi, and T. Osotchan. "Flow dependence of handheld breath analyzer for body fuel utilization monitoring." Journal of Physics: Conference Series 2431, no. 1 (2023): 012017. http://dx.doi.org/10.1088/1742-6596/2431/1/012017.
Pełny tekst źródłaStetter, Joseph R., and Tamara Russ. "(Invited) Past, Present and Future for Electrochemical Gas Sensors in Energy Applications." ECS Meeting Abstracts MA2024-01, no. 51 (2024): 2750. http://dx.doi.org/10.1149/ma2024-01512750mtgabs.
Pełny tekst źródłaNalimova, Svetlana, Zamir Shomakhov, Anton Bobkov, and Vyaсheslav Moshnikov. "Sacrificial Doping as an Approach to Controlling the Energy Properties of Adsorption Sites in Gas-Sensitive ZnO Nanowires." Micro 3, no. 2 (2023): 591–601. http://dx.doi.org/10.3390/micro3020040.
Pełny tekst źródłaSharif, Niloufar, and Ardemis Anoush Boghossian. "Carbon Nanotube-Based Sensors for Intelligent Packaging." ECS Meeting Abstracts MA2023-01, no. 10 (2023): 1225. http://dx.doi.org/10.1149/ma2023-01101225mtgabs.
Pełny tekst źródłaPaz Alpuche, Emilio, Pascal Gröger, Xuetao Wang, Thomas Kroyer, and Stefanos Fasoulas. "Influence of the Sputtering Technique and Thermal Annealing on YSZ Thin Films for Oxygen Sensing Applications." Coatings 11, no. 10 (2021): 1165. http://dx.doi.org/10.3390/coatings11101165.
Pełny tekst źródłaLiang, Meihua, Yong Yan, Jiaxuan Yang, et al. "In Situ-Derived N-Doped ZnO from ZIF-8 for Enhanced Ethanol Sensing in ZnO/MEMS Devices." Molecules 29, no. 8 (2024): 1703. http://dx.doi.org/10.3390/molecules29081703.
Pełny tekst źródłaPan, Hongyin, Chenyu Wang, Zexu Zhang, et al. "Oxygen vacancy-enriched ALD NiO sub-50 nm thin films for enhanced triethylamine detection." Applied Physics Letters 121, no. 11 (2022): 111603. http://dx.doi.org/10.1063/5.0104480.
Pełny tekst źródłaHuang, Qingwu, Jinjin Wu, Dawen Zeng, and Peng Zhou. "Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties." Materials 17, no. 5 (2024): 1009. http://dx.doi.org/10.3390/ma17051009.
Pełny tekst źródłaMüller, Gerhard, and Giorgio Sberveglieri. "Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration." Chemosensors 10, no. 5 (2022): 171. http://dx.doi.org/10.3390/chemosensors10050171.
Pełny tekst źródłaMoos, Ralf, Noriya Izu, Frank Rettig, Sebastian Reiß, Woosuck Shin, and Ichiro Matsubara. "Resistive Oxygen Gas Sensors for Harsh Environments." Sensors 11, no. 4 (2011): 3439–65. http://dx.doi.org/10.3390/s110403439.
Pełny tekst źródłaPlata, Desirée L., Yadira J. Briones, Rebecca L. Wolfe, et al. "Aerogel-platform optical sensors for oxygen gas." Journal of Non-Crystalline Solids 350 (December 2004): 326–35. http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.046.
Pełny tekst źródłaSuematsu, Kouichi, Takanori Honda, Masayoshi Yuasa, Tetsuya Kida, Kengo Shimanoe, and Noboru Yamazoe. "Effect of Foreign Metal Doping on the Gas Sensing Behaviors of SnO2-Based Gas Sensor." Advanced Materials Research 47-50 (June 2008): 1502–5. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1502.
Pełny tekst źródłaCervera Gómez, Javier, Jose Pelegri-Sebastia, and Rafael Lajara. "Circuit Topologies for MOS-Type Gas Sensor." Electronics 9, no. 3 (2020): 525. http://dx.doi.org/10.3390/electronics9030525.
Pełny tekst źródłavan, den Heever TS, L. Hardie G., and J. Perold W. "Zno Nanowire Gas Sensor ith Uv-Light for Improved Sensitivity." International Journal of Nano Studies & Technology 2, no. 1 (2013): 12–16. https://doi.org/10.19070/2167- 8685-130003.
Pełny tekst źródłaAhn, Sanghoon, Kang Woo Chun, and Changkyoo Park. "Long-Term Stability Test for Femtosecond Laser-Irradiated SnO2-Nanowire Gas Sensor for C7H8 Gas Sensing." Photonics 11, no. 6 (2024): 550. http://dx.doi.org/10.3390/photonics11060550.
Pełny tekst źródłaLin, Liyang, Susu Chen, Tao Deng, and Wen Zeng. "Oxygen-Deficient Stannic Oxide/Graphene for Ultrahigh-Performance Supercapacitors and Gas Sensors." Nanomaterials 11, no. 2 (2021): 372. http://dx.doi.org/10.3390/nano11020372.
Pełny tekst źródłaHerrmann, Julia, Gunter Hagen, Jaroslaw Kita, Frank Noack, Dirk Bleicker, and Ralf Moos. "Multi-gas sensor to detect simultaneously nitrogen oxides and oxygen." Journal of Sensors and Sensor Systems 9, no. 2 (2020): 327–35. http://dx.doi.org/10.5194/jsss-9-327-2020.
Pełny tekst źródłaNazrul, Effendy, David Kurniawan Eko, Dwiantoro Kenny, Arif Agus, and Muddin Nidlom. "The prediction of the oxygen content of the flue gas in a gas-fired boiler system using neural networks and rand." International Journal of Artificial Intelligence (IJ-AI) 11, no. 3 (2022): 923–29. https://doi.org/10.11591/ijai.v11.i3.pp923-929.
Pełny tekst źródłaMiyata, Shigeru. "Universal Exhaust Gas Oxygen Sensor and Other Sensors for Engine Control." Journal of The Japan Institute of Marine Engineering 39, no. 11 (2004): 759–64. http://dx.doi.org/10.5988/jime.39.759.
Pełny tekst źródłaKim, Seongyul, Sunil Pal, Pulickel M. Ajayan, Theodorian Borca-Tasciuc, and Nikhil Koratkar. "Electrical Breakdown Gas Detector Featuring Carbon Nanotube Array Electrodes." Journal of Nanoscience and Nanotechnology 8, no. 1 (2008): 416–19. http://dx.doi.org/10.1166/jnn.2008.187.
Pełny tekst źródłaPalmeira, J., L. Lopes, A. J. Silva, P. A. S. Jorge, and A. Oliva. "Optimization of Ormosil Glasses for Luminescence Based Dissolved Oxygen Sensors." Solid State Phenomena 161 (June 2010): 1–11. http://dx.doi.org/10.4028/www.scientific.net/ssp.161.1.
Pełny tekst źródłaIswanto, Iswanto, Alfian Ma’arif, Bilah Kebenaran, and Prisma Megantoro. "Design of gas concentration measurement and monitoring system for biogas power plant." Indonesian Journal of Electrical Engineering and Computer Science 22, no. 2 (2021): 726. http://dx.doi.org/10.11591/ijeecs.v22.i2.pp726-732.
Pełny tekst źródłaDonker, Nils, Daniela Schönauer-Kamin, and Ralf Moos. "Mixed-Potential Ammonia Sensor Based on a Dense Yttria-Stabilized Zirconia Film Manufactured at Room Temperature by Powder Aerosol Deposition." Sensors 24, no. 3 (2024): 811. http://dx.doi.org/10.3390/s24030811.
Pełny tekst źródłaRoy, Sandip K., Konstantin V. Vassilevski, Christopher J. O'Malley, Nick G. Wright, and Alton B. Horsfall. "Discriminating High k Dielectric Gas Sensors." Materials Science Forum 778-780 (February 2014): 1058–62. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.1058.
Pełny tekst źródłaPlatonov, Vadim, Abulkosim Nasriddinov, and Marina Rumyantseva. "Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase." Polymers 14, no. 17 (2022): 3481. http://dx.doi.org/10.3390/polym14173481.
Pełny tekst źródłaMohammadi, M. R., Mohammad Ghorbani, and Derek J. Fray. "Influence of Secondary Oxide Phases on Microstructural and Gas Sensitive Properties of Nanostructured Titanium Dioxide Thin Films." Advanced Materials Research 47-50 (June 2008): 41–44. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.41.
Pełny tekst źródłaEffendy, Nazrul, Eko David Kurniawan, Kenny Dwiantoro, Agus Arif, and Nidlom Muddin. "The prediction of the oxygen content of the flue gas in a gas-fired boiler system using neural networks and random forest." IAES International Journal of Artificial Intelligence (IJ-AI) 11, no. 3 (2022): 923. http://dx.doi.org/10.11591/ijai.v11.i3.pp923-929.
Pełny tekst źródłaSapkota, Raju, Pengjun Duan, Tanay Kumar, Anusha Venkataraman, and Chris Papadopoulos. "Thin Film Gas Sensors Based on Planetary Ball-Milled Zinc Oxide Nanoinks: Effect of Milling Parameters on Sensing Performance." Applied Sciences 11, no. 20 (2021): 9676. http://dx.doi.org/10.3390/app11209676.
Pełny tekst źródłaWang, Da Yu, and Eric Detwiler. "Electrode dynamic study of exhaust gas oxygen sensors." Sensors and Actuators B: Chemical 99, no. 2-3 (2004): 571–78. http://dx.doi.org/10.1016/j.snb.2004.01.009.
Pełny tekst źródłaLiu, Xiaohui, Wei Sun, Luyi Zou, et al. "Neutral cuprous complexes as ratiometric oxygen gas sensors." Dalton Trans. 41, no. 4 (2012): 1312–19. http://dx.doi.org/10.1039/c1dt11777g.
Pełny tekst źródłaSouri, M., M. N. Azarmanesh, E. Abbaspour Sani, M. Nasseri, and Kh Farhadi. "An analytical study of resistive oxygen gas sensors." Journal of Physics: Condensed Matter 20, no. 14 (2008): 145204. http://dx.doi.org/10.1088/0953-8984/20/14/145204.
Pełny tekst źródłaEvans, John T., Michael P. Sama, Joseph L. Taraba, and George B. Day. "Automated Calibration of Electrochemical Oxygen Sensors for Use in Compost Bedded Pack Barns." Transactions of the ASABE 60, no. 3 (2017): 957–62. http://dx.doi.org/10.13031/trans.12099.
Pełny tekst źródłaLing, Yan, Yunjiang Yu, Canxin Tian, and Changwei Zou. "Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites." Nanomaterials 14, no. 22 (2024): 1844. http://dx.doi.org/10.3390/nano14221844.
Pełny tekst źródłaZhang, Peng, Shuang Cao, Ning Sui, et al. "Influence of Positive Ion (Al3+, Sn4+, and Sb5+) Doping on the Basic Resistance and Sensing Performances of ZnO Nanoparticles Based Gas Sensors." Chemosensors 10, no. 9 (2022): 364. http://dx.doi.org/10.3390/chemosensors10090364.
Pełny tekst źródłaLiu, Chih-Yi, Annada Sankar Sadhu, Riya Karmakar, et al. "Strongly Improving the Sensitivity of Phosphorescence-Based Optical Oxygen Sensors by Exploiting Nano-Porous Substrates." Biosensors 12, no. 10 (2022): 774. http://dx.doi.org/10.3390/bios12100774.
Pełny tekst źródłaShujah, T., M. Ikram, A. R. Butt, et al. "H2S Gas Sensor Based on WO3 Nanostructures Synthesized via Aerosol Assisted Chemical Vapor Deposition Technique." Nanoscience and Nanotechnology Letters 11, no. 9 (2019): 1247–56. http://dx.doi.org/10.1166/nnl.2019.3011.
Pełny tekst źródła