Artykuły w czasopismach na temat „Oxygen vacancy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Oxygen vacancy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
CHEN, WEN-KAI, BAO-ZHEN SUN, XIA WANG, and CHUN-HAI LU. "THE ROLE OF SURFACE OXYGEN VACANCY IN N2O DECOMPOSITION ON Cu2O(111) SURFACE: A DFT STUDY." Journal of Theoretical and Computational Chemistry 07, no. 02 (2008): 263–76. http://dx.doi.org/10.1142/s0219633608003733.
Pełny tekst źródłaShyichuk, A., and E. Zych. "Oxygen Vacancy, Oxygen Vacancy–Vacancy Pairs, and Frenkel Defects in Cubic Lutetium Oxide." Journal of Physical Chemistry C 124, no. 28 (2020): 14945–62. http://dx.doi.org/10.1021/acs.jpcc.0c00974.
Pełny tekst źródłaGebauer, Ralph. "Oxygen Vacancies in Zirconia and Their Migration: The Role of Hubbard-U Parameters in Density Functional Theory." Crystals 13, no. 4 (2023): 574. http://dx.doi.org/10.3390/cryst13040574.
Pełny tekst źródłaChen, X. Y., L. H. Zhang, Y. P. Wang, S. Q. Wu, Z. F. Hou, and Z. Z. Zhu. "First-Principles Studies on the Formation of Oxygen Vacancies in Li2CoSiO4." Journal of The Electrochemical Society 168, no. 11 (2021): 110527. http://dx.doi.org/10.1149/1945-7111/ac35ce.
Pełny tekst źródłaMastrikov, Yuri A., Denis Gryaznov, Guntars Zvejnieks, Maksim N. Sokolov, Māra Putniņa та Eugene A. Kotomin. "Sr Doping and Oxygen Vacancy Formation in La1−xSrxScO3−δ Solid Solutions: Computational Modelling". Crystals 12, № 9 (2022): 1300. http://dx.doi.org/10.3390/cryst12091300.
Pełny tekst źródłaPeng, Yin-Hui, Chang-Chun He, Yu-Jun Zhao, and Xiao-Bao Yang. "Multi-peak emission of In2O3 induced by oxygen vacancy aggregation." Journal of Applied Physics 133, no. 7 (2023): 075702. http://dx.doi.org/10.1063/5.0135162.
Pełny tekst źródłaLi, Tong, Qi Wang, and Zhou Wang. "Oxygen Vacancy Injection on (111) CeO2 Nanocrystal Facets for Efficient H2O2 Detection." Biosensors 12, no. 8 (2022): 592. http://dx.doi.org/10.3390/bios12080592.
Pełny tekst źródłaChen, Dong, Fei Gao, Hui-Qiu Deng, Bo Liu, Wang-Yu Hu, and Xin Sun. "Migration of defect clusters and xenon-vacancy clusters in uranium dioxide." International Journal of Modern Physics B 28, no. 18 (2014): 1450120. http://dx.doi.org/10.1142/s0217979214501203.
Pełny tekst źródłaDas, Tridip, Jason D. Nicholas, and Yue Qi. "Polaron size and shape effects on oxygen vacancy interactions in lanthanum strontium ferrite." Journal of Materials Chemistry A 5, no. 47 (2017): 25031–43. http://dx.doi.org/10.1039/c7ta06948k.
Pełny tekst źródłaYuhara, S., Yorinobu Takigawa, Tokuteru Uesugi, and Kenji Higashi. "Effect of Co-Doping Cation on Phase Stability of Zirconia Bioceramics in Hot Water." Advanced Materials Research 26-28 (October 2007): 773–76. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.773.
Pełny tekst źródłaChen, Lanli, Yuanyuan Cui, Siqi Shi, Bin Liu, Hongjie Luo, and Yanfeng Gao. "First-principles study of the effect of oxygen vacancy and strain on the phase transition temperature of VO2." RSC Advances 6, no. 90 (2016): 86872–79. http://dx.doi.org/10.1039/c6ra19121e.
Pełny tekst źródłaGuo, Weiqing, Qianhui Wei, Gangrong Li, Feng Wei, and Zhuofeng Hu. "A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation." Nanomaterials 14, no. 11 (2024): 923. http://dx.doi.org/10.3390/nano14110923.
Pełny tekst źródłaMa, Qiao Yun, Gui Feng Chen, Hui Zhang, et al. "Progress in Study of Oxygen-Related Defects in Electron Irradiated CZ-Si." Advanced Materials Research 427 (January 2012): 115–18. http://dx.doi.org/10.4028/www.scientific.net/amr.427.115.
Pełny tekst źródłaYang, Chao, Enwei Sun, Zhen Liu, Xingru Zhang, Xudong Qi, and Wenwu Cao. "Phase-field simulation on the interaction of oxygen vacancies with charged and neutral domain walls in hexagonal YMnO3." Journal of Physics: Condensed Matter 34, no. 16 (2022): 165401. http://dx.doi.org/10.1088/1361-648x/ac50d8.
Pełny tekst źródłaHuang, Baorui, Yeqi Liu, Yanni Zhang, Fuchun Zhang, Yanning Yang, and Jiaxin Li. "Effect of Vacancy Defects on the Electronic Structure and Optical Properties of Bi4O5Br2: First-Principles Calculations." Coatings 14, no. 11 (2024): 1361. http://dx.doi.org/10.3390/coatings14111361.
Pełny tekst źródłaLi, Yongjin, Lu Yao, Zhaoyi Yin, Zhiyuan Cheng, Shenghong Yang, and Yueli Zhang. "Defect-induced abnormal enhanced upconversion luminescence in BiOBr:Yb3+/Er3+ ultrathin nanosheets and its influence on visible-NIR light photocatalysis." Inorganic Chemistry Frontiers 7, no. 2 (2020): 519–28. http://dx.doi.org/10.1039/c9qi01275c.
Pełny tekst źródłaWang, Qing Bo, and Cui Zhou. "First-Principles Study the Effects of Single Zinc or Oxygen Vacancy on the Electronic and Optical Properties of V-Doped ZnO." Advanced Materials Research 393-395 (November 2011): 114–18. http://dx.doi.org/10.4028/www.scientific.net/amr.393-395.114.
Pełny tekst źródłaWeng, Zhen Zhen, Zhi Gao Huang, and Wen Xiong Lin. "First-Principles Study on Co-Doped ZnO with Oxygen Vacancy." Advanced Materials Research 154-155 (October 2010): 124–29. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.124.
Pełny tekst źródłaWANG, HAI-BIN, PING PENG, YUAN-HONG TANG, DAN WANG, and LI-MING TANG. "TUNING THE "d0" FERROMAGNETISM IN In2O3 QUANTUM DOTS BY DANGLING BONDS AND VACANCY BASED ON THE FIRST-PRINCIPLE CALCULATION." Modern Physics Letters B 27, no. 10 (2013): 1350068. http://dx.doi.org/10.1142/s0217984913500681.
Pełny tekst źródłaHuang, Yanmei, Yu Yu, Yifu Yu, and Bin Zhang. "Oxygen Vacancy Engineering in Photocatalysis." Solar RRL 4, no. 8 (2020): 2000037. http://dx.doi.org/10.1002/solr.202000037.
Pełny tekst źródłaJana, Biswajit, and Ayan Roy Chaudhuri. "Oxygen Vacancy Engineering and Its Impact on Resistive Switching of Oxide Thin Films for Memory and Neuromorphic Applications." Chips 3, no. 3 (2024): 235–57. http://dx.doi.org/10.3390/chips3030012.
Pełny tekst źródłaMelikhova, Oksana, Jan Kuriplach, Jakub Čížek, Ivan Procházka, and Gerhard Brauer. "Structure and Positron Characteristics of Basic Open Volume Defects in Zirconia." Materials Science Forum 607 (November 2008): 125–27. http://dx.doi.org/10.4028/www.scientific.net/msf.607.125.
Pełny tekst źródłaXu, Youhui, Xiaoying Cao, Xiuwu Chen, et al. "First-principles study of the effect of oxygen vacancy and iridium doping on formaldehyde adsorption on the La2O3(001) surface." RSC Advances 14, no. 30 (2024): 21398–410. http://dx.doi.org/10.1039/d4ra01948b.
Pełny tekst źródłaRaitani, Kartik, Manu Prakash Maurya, Hari Krishna Rajan, C. Manjunatha, Chandresh Rastogi, and Gyanprakash Devendranath Maurya. "Optimization of Ascorbic Acid Contents in Preparation of Cobalt Oxide for Highest Oxygen Evolution Activity." ECS Meeting Abstracts MA2022-02, no. 48 (2022): 1872. http://dx.doi.org/10.1149/ma2022-02481872mtgabs.
Pełny tekst źródłaWang, Dan, Ronghua Zan, Xiaorong Zhu, et al. "A machine learning-assisted study of the formation of oxygen vacancies in anatase titanium dioxide." RSC Advances 14, no. 45 (2024): 33198–205. http://dx.doi.org/10.1039/d4ra04422c.
Pełny tekst źródłaWang, M., M. Feng, and Y. Lu. "Ab initio study of the anion vacancy on anatase TiO2 (101) surface." Modern Physics Letters B 28, no. 10 (2014): 1450076. http://dx.doi.org/10.1142/s0217984914500766.
Pełny tekst źródłaGood, Brian S. "Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate." MRS Advances 1, no. 17 (2016): 1203–8. http://dx.doi.org/10.1557/adv.2015.54.
Pełny tekst źródłaShi, Zisheng, Wei Chen, Yin Hu, et al. "Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization." Molecules 29, no. 6 (2024): 1362. http://dx.doi.org/10.3390/molecules29061362.
Pełny tekst źródłaYin, Xiaoyan, Robert Spatschek, Norbert H. Menzler, and Claas Hüter. "A Pragmatic Transfer Learning Approach for Oxygen Vacancy Formation Energies in Oxidic Ceramics." Materials 15, no. 8 (2022): 2879. http://dx.doi.org/10.3390/ma15082879.
Pełny tekst źródłaPrasanna, T. R. S., and Alexandra Navrotsky. "Energetics of the oxygen vacancy order-disorder transition in Ba2In2O5." Journal of Materials Research 8, no. 7 (1993): 1484–86. http://dx.doi.org/10.1557/jmr.1993.1484.
Pełny tekst źródłaChu, Qi, Jingmeng Li, Sila Jin, et al. "Charge-Transfer Induced by the Oxygen Vacancy Defects in the Ag/MoO3 Composite System." Nanomaterials 11, no. 5 (2021): 1292. http://dx.doi.org/10.3390/nano11051292.
Pełny tekst źródłaCui, Jie, Shuhua Liang, Xianhui Wang, and Jianmin Zhang. "First principles study of oxygen vacancies in (Mo + C)-doped anatase TiO2." Modern Physics Letters B 29, no. 14 (2015): 1550072. http://dx.doi.org/10.1142/s0217984915500724.
Pełny tekst źródłaEglitis, Roberts I., Juris Purans, Anatoli I. Popov, and Ran Jia. "Tendencies in ABO3 Perovskite and SrF2, BaF2 and CaF2 Bulk and Surface F-Center Ab Initio Computations at High Symmetry Cubic Structure." Symmetry 13, no. 10 (2021): 1920. http://dx.doi.org/10.3390/sym13101920.
Pełny tekst źródłaVarela, J. A., L. A. Perazolli, J. A. Cerri, E. R. Leite, and E. Longo. "Sintering of tin oxide and its applications in electronics and processing of high purity optical glasses." Cerâmica 47, no. 302 (2001): 117–23. http://dx.doi.org/10.1590/s0366-69132001000200010.
Pełny tekst źródłaMastrikov, Yuri A., Denis Gryaznov, Maksim N. Sokolov, et al. "Oxygen Vacancy Formation and Migration within the Antiphase Boundaries in Lanthanum Scandate-Based Oxides: Computational Study." Materials 15, no. 7 (2022): 2695. http://dx.doi.org/10.3390/ma15072695.
Pełny tekst źródłaПеревалов, T. B. "Моделирование атомной и электронной структуры вакансий и поливакансий кислорода в ZrO-=SUB=-2-=/SUB=-". Физика твердого тела 60, № 3 (2018): 421. http://dx.doi.org/10.21883/ftt.2018.03.45537.03d.
Pełny tekst źródłaChoi, Youn-Kyu, Takuya Hoshina, Hiroaki Takeda, and Takaaki Tsurumi. "Effect of Oxygen Vacancy and Oxygen Vacancy Migration on Dielectric Response of BaTiO3-Based Ceramics." Japanese Journal of Applied Physics 50, no. 3R (2011): 031504. http://dx.doi.org/10.7567/jjap.50.031504.
Pełny tekst źródłaChoi, Youn-Kyu, Takuya Hoshina, Hiroaki Takeda, and Takaaki Tsurumi. "Effect of Oxygen Vacancy and Oxygen Vacancy Migration on Dielectric Response of BaTiO3-Based Ceramics." Japanese Journal of Applied Physics 50 (March 22, 2011): 031504. http://dx.doi.org/10.1143/jjap.50.031504.
Pełny tekst źródłaChen, Tao, Yang Chen, Ning Zhang, Tiantian Liu, Songlin Wang, and Qi Zhang. "Effect of Oxygen Vacancy Concentration on the Electrical Properties and Microstructure of Bi4Ti3O12 Ceramics: Experimental and First-Principles Investigation." Materials 18, no. 11 (2025): 2666. https://doi.org/10.3390/ma18112666.
Pełny tekst źródłaJames, Christine, Yan Wu, Brian Sheldon та Yue Qi. "Computational Analysis of Coupled Anisotropic Chemical Expansion in Li2-XMnO3-δ". MRS Advances 1, № 15 (2016): 1037–42. http://dx.doi.org/10.1557/adv.2016.48.
Pełny tekst źródłaReyes-Gasga, J., T. Krekels, G. Van Tendeloo, et al. "Vacancy-ordered superstructures in YBa2Cu3Ox." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 166–67. http://dx.doi.org/10.1017/s042482010015280x.
Pełny tekst źródłaLiu, Jianqiao, Wanqiu Wang, Zhaoxia Zhai, et al. "Influence of Oxygen Vacancy Behaviors in Cooling Process on Semiconductor Gas Sensors: A Numerical Analysis." Sensors 18, no. 11 (2018): 3929. http://dx.doi.org/10.3390/s18113929.
Pełny tekst źródłaYang, Min, Genli Shen, Qi Wang, et al. "Roles of Oxygen Vacancies of CeO2 and Mn-Doped CeO2 with the Same Morphology in Benzene Catalytic Oxidation." Molecules 26, no. 21 (2021): 6363. http://dx.doi.org/10.3390/molecules26216363.
Pełny tekst źródłaZeng, Zhong-Liang. "First-Principles Study on the Structural and Electronic Properties of N Atoms Doped-Rutile TiO2of Oxygen Vacancies." Advances in Materials Science and Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/670243.
Pełny tekst źródłaIdowu, Ibrahim Ismail, Lawal Mohammed, Sadiq Umar, Adamu Uzairu, Bashir Yusuf, and Yahaya Saadu Itas. "Unraveling the influence of oxygen vacancy with and without replacement on Cu<i>2</i>O: A DFT Study." Dutse Journal of Pure and Applied Sciences 10, no. 3a (2024): 304–15. http://dx.doi.org/10.4314/dujopas.v10i3a.28.
Pełny tekst źródłaMeng, Chao, Mengchang Lin, Xuechun Sun, et al. "Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution." Chemical Communications 55, no. 20 (2019): 2904–7. http://dx.doi.org/10.1039/c8cc08951e.
Pełny tekst źródłaVarela, J. A., L. A. Perazolli, E. Longo, E. R. Leite, and J. A. Cerri. "Effect of atmosphere and dopants on sintering of SnO2." Science of Sintering 34, no. 1 (2002): 23–31. http://dx.doi.org/10.2298/sos0201023v.
Pełny tekst źródłaZhang, Xinping, Fawei Tang, Meng Wang, et al. "Femtosecond visualization of oxygen vacancies in metal oxides." Science Advances 6, no. 10 (2020): eaax9427. http://dx.doi.org/10.1126/sciadv.aax9427.
Pełny tekst źródłaLiu, Shikai, Xingyu Li, Gang Li, et al. "In Situ Modulation of Oxygen Vacancy Concentration in Hf0.5Zr0.5O2−x Thin Films and the Mechanism of Its Impact on Ferroelectricity." Coatings 14, no. 9 (2024): 1121. http://dx.doi.org/10.3390/coatings14091121.
Pełny tekst źródłaPanomsuwan, Gasidit, and Nagahiro Saito. "Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition." Oxygen 1, no. 1 (2021): 62–72. http://dx.doi.org/10.3390/oxygen1010007.
Pełny tekst źródła