Gotowa bibliografia na temat „Partial differential equations”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Partial differential equations”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Partial differential equations"

1

Tumajer, František. "Controllable systems of partial differential equations." Applications of Mathematics 31, no. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tiwari, Chinta Mani, and Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations." International Journal of Research Publication and Reviews 5, no. 4 (2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hibberd, S., Richard Bellman, and George Adomian. "Partial Differential Equations." Mathematical Gazette 71, no. 458 (1987): 341. http://dx.doi.org/10.2307/3617100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Abbott, Steve, and Lawrence C. Evans. "Partial Differential Equations." Mathematical Gazette 83, no. 496 (1999): 185. http://dx.doi.org/10.2307/3618751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chang, Sun-Yung Alice, Camillo De Lellis, and Reiner Schätzle. "Partial Differential Equations." Oberwolfach Reports 10, no. 3 (2013): 2259–319. http://dx.doi.org/10.4171/owr/2013/40.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chang, Sun-Yung Alice, Camillo De Lellis, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 12, no. 3 (2015): 2065–124. http://dx.doi.org/10.4171/owr/2015/36.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

De Lellis, Camillo, Richard Schoen, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 14, no. 3 (2018): 2165–222. http://dx.doi.org/10.4171/owr/2017/35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

De Philippis, Guido, Richard Schoen, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 16, no. 3 (2020): 2033–97. http://dx.doi.org/10.4171/owr/2019/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Evans, W. D. "PARTIAL DIFFERENTIAL EQUATIONS." Bulletin of the London Mathematical Society 20, no. 4 (1988): 375–76. http://dx.doi.org/10.1112/blms/20.4.375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

De Philippis, Guido, Ailana M. Fraser, and Felix Schulze. "Partial Differential Equations." Oberwolfach Reports 20, no. 3 (2024): 1789–842. http://dx.doi.org/10.4171/owr/2023/32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Partial differential equations"

1

Dareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.

Pełny tekst źródła
Streszczenie:
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
Style APA, Harvard, Vancouver, ISO itp.
2

Ranner, Thomas. "Computational surface partial differential equations." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57647/.

Pełny tekst źródła
Streszczenie:
Surface partial differential equations model several natural phenomena; for example in uid mechanics, cell biology and material science. The domain of the equations can often have complex and changing morphology. This implies analytic techniques are unavailable, hence numerical methods are required. The aim of this thesis is to design and analyse three methods for solving different problems with surface partial differential equations at their core. First, we define a new finite element method for numerically approximating solutions of partial differential equations in a bulk region coupled to
Style APA, Harvard, Vancouver, ISO itp.
3

Fedrizzi, Ennio. "Partial differential equations and noise." Paris 7, 2012. http://www.theses.fr/2012PA077176.

Pełny tekst źródła
Streszczenie:
Dans ce travail, nous présentons quelques exemples des effets du bruit sur la solution d'une équation aux dérivées partielles dans trois contextes différents. Nous examinons d'abord deux équations aux dérivées partielles non linéaires dispersives, l'équation de Schrodinger non linéaire et l'équation de Korteweg - de | Vries. Nous analysons les effets d'une condition initiale aléatoire sur certaines solutions spéciales, les ! solitons. Le deuxième cas considéré est une équation aux dérive��es partielles linéaire, l'équation d'onde, avec conditions initiales aléatoires. Nous montrons qu'avec des
Style APA, Harvard, Vancouver, ISO itp.
4

Tarkhanov, Nikolai. "Unitary solutions of partial differential equations." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2985/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Enstedt, Mattias. "Selected Topics in Partial Differential Equations." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145763.

Pełny tekst źródła
Streszczenie:
This Ph.D. thesis consists of five papers and an introduction to the main topics of the thesis. In Paper I we give an abstract criteria for existence of multiple solutions to nonlinear coupled equations involving magnetic Schrödinger operators. In paper II we establish existence of infinitely many solutions to the quasirelativistic Hartree-Fock equations for Coulomb systems along with properties of the solutions. In Paper III we establish existence of a ground state to the magnetic Hartree-Fock equations. In Paper IV we study the Choquard equation with general potentials (including quasirelati
Style APA, Harvard, Vancouver, ISO itp.
6

Guo, Yujin. "Partial differential equations of electrostatic MEMS." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31315.

Pełny tekst źródła
Streszczenie:
Micro-Electromechanical Systems (MEMS) combine electronics with micro-size mechanical devices in the process of designing various types of microscopic machinery, especially those involved in conceiving and building modern sensors. Since their initial development in the 1980s, MEMS has revolutionized numerous branches of science and industry. Indeed, MEMS-based devices are now essential components of modern designs in a variety of areas, such as in commercial systems, the biomedical industry, space exploration, telecommunications, and other fields of applications. As it is often the case in sci
Style APA, Harvard, Vancouver, ISO itp.
7

Keane, Therese Alison Mathematics &amp Statistics Faculty of Science UNSW. "Combat modelling with partial differential equations." Awarded By:University of New South Wales. Mathematics & Statistics, 2009. http://handle.unsw.edu.au/1959.4/43086.

Pełny tekst źródła
Streszczenie:
In Part I of this thesis we extend the Lanchester Ordinary Differential Equations and construct a new physically meaningful set of partial differential equations with the aim of more realistically representing soldier dynamics in order to enable a deeper understanding of the nature of conflict. Spatial force movement and troop interaction components are represented with both local and non-local terms, using techniques developed in biological aggregation modelling. A highly accurate flux limiter numerical method ensuring positivity and mass conservation is used, addressing the difficulties of i
Style APA, Harvard, Vancouver, ISO itp.
8

Hofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.

Pełny tekst źródła
Streszczenie:
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyperbolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the s
Style APA, Harvard, Vancouver, ISO itp.
9

Lloyd, David J. B. "Localised solutions of partial differential equations." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434765.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lorz, Alexander Stephan Richard. "Partial differential equations modelling biophysical phenomena." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Partial differential equations"

1

Taylor, Michael E. Partial differential equations. Springer, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Dezin, Aleksei A. Partial Differential Equations. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71334-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kevorkian, J. Partial Differential Equations. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3266-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bellman, Richard, and George Adomian. Partial Differential Equations. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5209-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chern, Shiing-shen, ed. Partial Differential Equations. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082920.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cardoso, Fernando, Djairo G. de Figueiredo, Rafael Iório, and Orlando Lopes, eds. Partial Differential Equations. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jost, Jürgen. Partial Differential Equations. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4809-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Taylor, Michael E. Partial Differential Equations. Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4684-9320-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Epstein, Marcelo. Partial Differential Equations. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55212-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jost, Jürgen. Partial Differential Equations. Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49319-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Partial differential equations"

1

Gilbert, Robert P., George C. Hsiao, and Robert J. Ronkese. "Partial Differential Equations." In Differential Equations, 2nd ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003175643-11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bellman, Richard, and George Adomian. "Differential Quadrature." In Partial Differential Equations. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5209-6_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jost, Jürgen. "Hyperbolic Equations." In Partial Differential Equations. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4809-9_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vesely, Franz J. "Partial Differential Equations." In Computational Physics. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Srinivas, Karkenahalli, and Clive A. J. Fletcher. "Partial Differential Equations." In Scientific Computation. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58108-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fletcher, Clive A. J. "Partial Differential Equations." In Computational Techniques for Fluid Dynamics 1. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58229-5_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dyke, Phil. "Partial Differential Equations." In Springer Undergraduate Mathematics Series. Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6395-4_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Dyke, Philip P. G. "Partial Differential Equations." In Springer Undergraduate Mathematics Series. Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0505-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Vesely, Franz J. "Partial Differential Equations." In Computational Physics. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1329-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Shima, Hiroyuki, and Tsuneyoshi Nakayama. "Partial Differential Equations." In Higher Mathematics for Physics and Engineering. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Partial differential equations"

1

Sree Lakshmi, D., A. Divya, Gayathri Yadav Mugada, Tanusha Koduru, Mownika Bingi, and Ishwarya Madupu. "Skin Lesion Detection Using Partial Differential Equations." In 2025 International Conference on Visual Analytics and Data Visualization (ICVADV). IEEE, 2025. https://doi.org/10.1109/icvadv63329.2025.10961450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Neumann, Niels, Jasper Verbree, and Carmen Hoek. "Quantum computing for partial differential equations in practice." In Quantum Technologies for Defence and Security, edited by Giacomo Sorelli, Sara Ducci, and Sylvain Schwartz. SPIE, 2024. http://dx.doi.org/10.1117/12.3033212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Luo, Zhenguo, and Liping Luo. "Forced oscillation of impulsive fractional partial differential equations." In 2025 5th International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2025), edited by Peicheng Zhu and Guihua Lin. SPIE, 2025. https://doi.org/10.1117/12.3070351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Duteil, Nastassia Pouradier, Francesco Rossi, Ugo Boscain, and Benedetto Piccoli. "Developmental Partial Differential Equations." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

CHOQUET-BRUHAT, YVONNE. "FUCHSIAN PARTIAL DIFFERENTIAL EQUATIONS." In Proceedings of the 14th Conference on WASCOM 2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812772350_0024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Guo, Boling, and Dadi Yang. "Nonlinear Partial Differential Equations and Applications." In International Conference on Nonlinear Partial Differential Equations and Applications. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814527989.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ufuktepe, Ünal. "Partial Differential Equations with webMathematica." In Proceedings of the Fifth International Mathematica Symposium. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003. http://dx.doi.org/10.1142/9781848161313_0023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

FAN, TIAN YOU. "QUASICRYSTALS AND PARTIAL DIFFERENTIAL EQUATIONS." In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Vivona, Doretta, and Maria Divari. "Basic generated partial differential equations." In 2008 6th International Symposium on Intelligent Systems and Informatics (SISY 2008). IEEE, 2008. http://dx.doi.org/10.1109/sisy.2008.4664969.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

"Factorization of partial differential equations." In Уфимская осенняя математическая школа - 2022. 2 часть. Baskir State University, 2022. http://dx.doi.org/10.33184/mnkuomsh2t-2022-09-28.18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Partial differential equations"

1

Shearer, Michael. Systems of Hyperbolic Partial Differential Equations. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada290287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Seidman, Thomas I. Nonlinear Systems of Partial Differential Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada217581.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Arnold, Douglas, N, ed. Compatible Spatial Discretizations for Partial Differential Equations. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/834807.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hyman, J. M., M. Shashkov, M. Staley, S. Kerr, S. Steinberg, and J. Castillo. Mimetic difference approximations of partial differential equations. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/518902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dalang, Robert C., and N. Frangos. Stochastic Hyperbolic and Parabolic Partial Differential Equations. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada290372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hale, Jack, Constantine M. Dafermos, John Mallet-Paret, Panagiotis E. Souganidis, and Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada255356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dafermos, Constantine M., John Mallet-Paret, Panagiotis E. Souganidis, and Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada271514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shearer, Michael. Systems of Nonlinear Hyperbolic Partial Differential Equations. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada344449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sharp, D. H., S. Habib, and M. B. Mineev. Numerical Methods for Stochastic Partial Differential Equations. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/759177.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cai, X.-C. Scalable nonlinear iterative methods for partial differential equations. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/15013129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!