Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Partial differential equations.

Artykuły w czasopismach na temat „Partial differential equations”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Partial differential equations”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tumajer, František. "Controllable systems of partial differential equations." Applications of Mathematics 31, no. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tiwari, Chinta Mani, and Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations." International Journal of Research Publication and Reviews 5, no. 4 (2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hibberd, S., Richard Bellman, and George Adomian. "Partial Differential Equations." Mathematical Gazette 71, no. 458 (1987): 341. http://dx.doi.org/10.2307/3617100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Abbott, Steve, and Lawrence C. Evans. "Partial Differential Equations." Mathematical Gazette 83, no. 496 (1999): 185. http://dx.doi.org/10.2307/3618751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chang, Sun-Yung Alice, Camillo De Lellis, and Reiner Schätzle. "Partial Differential Equations." Oberwolfach Reports 10, no. 3 (2013): 2259–319. http://dx.doi.org/10.4171/owr/2013/40.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chang, Sun-Yung Alice, Camillo De Lellis, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 12, no. 3 (2015): 2065–124. http://dx.doi.org/10.4171/owr/2015/36.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

De Lellis, Camillo, Richard Schoen, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 14, no. 3 (2018): 2165–222. http://dx.doi.org/10.4171/owr/2017/35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

De Philippis, Guido, Richard Schoen, and Peter Topping. "Partial Differential Equations." Oberwolfach Reports 16, no. 3 (2020): 2033–97. http://dx.doi.org/10.4171/owr/2019/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Evans, W. D. "PARTIAL DIFFERENTIAL EQUATIONS." Bulletin of the London Mathematical Society 20, no. 4 (1988): 375–76. http://dx.doi.org/10.1112/blms/20.4.375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

De Philippis, Guido, Ailana M. Fraser, and Felix Schulze. "Partial Differential Equations." Oberwolfach Reports 20, no. 3 (2024): 1789–842. http://dx.doi.org/10.4171/owr/2023/32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Satty, ThomasL. "Partial differential equations." Computers & Mathematics with Applications 11, no. 1-3 (1985): 1–4. http://dx.doi.org/10.1016/0898-1221(85)90135-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

De Philippis, Guido, Richard Schoen, and Felix Schulze. "Partial Differential Equations." Oberwolfach Reports 18, no. 3 (2022): 1859–914. http://dx.doi.org/10.4171/owr/2021/35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Mona, Hunaiber, and Al-Aati Ali. "SOME FUNDAMENTAL PROPERTIES OF HUNAIBER TRANSFORM AND ITS APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS." INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER RESEARCH 10, no. 07 (2022): 2808–11. https://doi.org/10.5281/zenodo.6866430.

Pełny tekst źródła
Streszczenie:
In this paper, we study some basic properties of a new integral transform '' Hunaiber transform''. Moreover, we apply Hunaiber transform to solve linear partial differential equations with initial and boundary conditions. We solve first order partial differential equations and Second order partial differential equations which are essential equations in mathematical physics and applied mathematics.
Style APA, Harvard, Vancouver, ISO itp.
14

N O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform." International Journal of Science and Research (IJSR) 12, no. 6 (2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

He, Ji-Huan, and Zheng-Biao Li. "Converting fractional differential equations into partial differential equations." Thermal Science 16, no. 2 (2012): 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Pełny tekst źródła
Streszczenie:
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Style APA, Harvard, Vancouver, ISO itp.
16

Grinfield, M., D. W. Trim, and J. Kelvorkian. "Applied Partial Differential Equations." Mathematical Gazette 79, no. 484 (1995): 230. http://dx.doi.org/10.2307/3620109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Crilly, Tony, and Peter V. O'Neil. "Beginning Partial Differential Equations." Mathematical Gazette 84, no. 499 (2000): 187. http://dx.doi.org/10.2307/3621560.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zubik-Kowal, Barbara. "Delay partial differential equations." Scholarpedia 3, no. 4 (2008): 2851. http://dx.doi.org/10.4249/scholarpedia.2851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Yousef, Ali Sulaiman Alsulaiman, and M. D. Al-Eybani Ahmad. "Solving Non-Linear Partial Differential Equations Using Differential Transform Method." International Journal of Mathematics and Physical Sciences Research 11, no. 1 (2023): 20–23. https://doi.org/10.5281/zenodo.7929620.

Pełny tekst źródła
Streszczenie:
<strong>Abstract:</strong> Over time, the Differential Transform Method (DTM) has emerged as a powerful mathematical technique that can be deployed in solving differential equations like ODEs and PDEs. DTM was first presented by Anastassiou in the late 1980s and has since been widely used in various fields of mathematics, engineering, and physics (Chen, 2004). The DTM works by transforming the PDE into an algebraic equation, which can then be solved using standard algebraic techniques. <strong>Keywords:</strong> Partial Differential, Non-Linear Partial Differential, Differential Transform Meth
Style APA, Harvard, Vancouver, ISO itp.
20

Krupková, Olga. "Partial differential equations with differential constraints." Journal of Differential Equations 220, no. 2 (2006): 354–95. http://dx.doi.org/10.1016/j.jde.2005.03.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Mwinken, Delphin. "The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry." Selecciones Matemáticas 11, no. 02 (2024): 393–408. https://doi.org/10.17268/sel.mat.2024.02.11.

Pełny tekst źródła
Streszczenie:
Calculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differential geometry. In PDEs, calculus of variations provides methods to find functions that minimize energy functionals, leading to solutions of various physical problems. In differential geometry, it helps understand the properties of curves and surfaces, such as geodesics, by minimizing arc-length func
Style APA, Harvard, Vancouver, ISO itp.
22

Barles, Guy, Rainer Buckdahn, and Etienne Pardoux. "Backward stochastic differential equations and integral-partial differential equations." Stochastics and Stochastic Reports 60, no. 1-2 (1997): 57–83. http://dx.doi.org/10.1080/17442509708834099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Sadhasivam, V., and M. Deepa. "Oscillation criteria for fractional impulsive hybrid partial differential equations." Issues of Analysis 26, no. 2 (2019): 73–91. http://dx.doi.org/10.15393/j3.art.2019.5910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Fečkan, Michal. "A certain type of partial differential equations on tori." Mathematica Bohemica 117, no. 4 (1992): 365–72. http://dx.doi.org/10.21136/mb.1992.126061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Karaagac, Berat, Nuri Murat Yagmurlu, Alaattin Esen, and Selcuk Kutluay. "A Fresh Look To Exact Solutions of Some Coupled Equations." ITM Web of Conferences 22 (2018): 01006. http://dx.doi.org/10.1051/itmconf/20182201006.

Pełny tekst źródła
Streszczenie:
This manuscript is going to seek travelling wave solutions of some coupled partial differential equations with an expansion method known as Sine- Gordon expansion method. Primarily, we are going to employ a wave transformation to partial differential equation to reduce the equations into ordinary differential equations. Then, the solution form of the handled equations is going to be constructed as polynomial of hyperbolic trig or trig functions. Finally, with the aid of symbolic computation, new exact solutions of the partial differentials equations will have been found.
Style APA, Harvard, Vancouver, ISO itp.
26

Fleming, W. H., and M. Nisio. "Differential games for stochastic partial differential equations." Nagoya Mathematical Journal 131 (September 1993): 75–107. http://dx.doi.org/10.1017/s0027763000004554.

Pełny tekst źródła
Streszczenie:
In this paper we are concerned with zero-sum two-player finite horizon games for stochastic partial differential equations (SPDE in short). The main aim is to formulate the principle of dynamic programming for the upper (or lower) value function and investigate the relationship between upper (or lower) value function and viscocity solution of min-max (or max-min) equation on Hilbert space.
Style APA, Harvard, Vancouver, ISO itp.
27

Anikonov, Yu E., and M. V. Neshchadim. "Differential Identities for Nonlinear Partial Differential Equations." Journal of Mathematical Sciences 215, no. 4 (2016): 436–43. http://dx.doi.org/10.1007/s10958-016-2849-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Buckdahn, Rainer, and Shige Peng. "Stationary backward stochastic differential equations and associated partial differential equations." Probability Theory and Related Fields 115, no. 3 (1999): 383. http://dx.doi.org/10.1007/s004400050242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Petzold, Linda, Shengtai Li, Yang Cao, and Radu Serban. "Sensitivity analysis of differential-algebraic equations and partial differential equations." Computers & Chemical Engineering 30, no. 10-12 (2006): 1553–59. http://dx.doi.org/10.1016/j.compchemeng.2006.05.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lord, Nick, and Walter A. Strauss. "Partial Differential Equations: An Introduction." Mathematical Gazette 77, no. 479 (1993): 286. http://dx.doi.org/10.2307/3619758.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Gaussier, Herve, and Joel Merker. "SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS." Journal of the Korean Mathematical Society 40, no. 3 (2003): 517–61. http://dx.doi.org/10.4134/jkms.2003.40.3.517.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Rauch, Jeffrey. "Book Review: Partial differential equations." Bulletin of the American Mathematical Society 37, no. 03 (2000): 363–68. http://dx.doi.org/10.1090/s0273-0979-00-00868-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Schmitt, Klaus. "Nonlinear partial differential equations conference." Rocky Mountain Journal of Mathematics 18, no. 2 (1988): 213–14. http://dx.doi.org/10.1216/rmj-1988-18-2-213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Dynkin, E. B. "Superprocesses and Partial Differential Equations." Annals of Probability 21, no. 3 (1993): 1185–262. http://dx.doi.org/10.1214/aop/1176989116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Dattoli, G., B. Germano, M. R. Martinelli, and P. E. Ricci. "Monomiality and partial differential equations." Mathematical and Computer Modelling 50, no. 9-10 (2009): 1332–37. http://dx.doi.org/10.1016/j.mcm.2009.06.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Aris, Rhee, and Amudson. "First-order partial differential equations." Chemical Engineering Science 42, no. 10 (1987): 2493–94. http://dx.doi.org/10.1016/0009-2509(87)80131-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Buium, Alexandru, and Santiago R. Simanca. "Arithmetic partial differential equations, I." Advances in Mathematics 225, no. 2 (2010): 689–793. http://dx.doi.org/10.1016/j.aim.2009.12.026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Buium, Alexandru, and Santiago R. Simanca. "Arithmetic partial differential equations, II." Advances in Mathematics 225, no. 3 (2010): 1308–40. http://dx.doi.org/10.1016/j.aim.2009.12.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Maligranda, Lech, Lars Erik Persson, and John Wyller. "Interpolation and partial differential equations." Journal of Mathematical Physics 35, no. 9 (1994): 5035–46. http://dx.doi.org/10.1063/1.530829.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Rubio, J. E. "Partial differential equations of evolution." Endeavour 15, no. 4 (1991): 190. http://dx.doi.org/10.1016/0160-9327(91)90135-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Coron, Jean-Michel. "Control of partial differential equations." Scholarpedia 4, no. 11 (2009): 6451. http://dx.doi.org/10.4249/scholarpedia.6451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Motamed, Mohammad. "Fuzzy-Stochastic Partial Differential Equations." SIAM/ASA Journal on Uncertainty Quantification 7, no. 3 (2019): 1076–104. http://dx.doi.org/10.1137/17m1140017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wang, Chih-Yueh. "Partial differential equations for probabilists." Journal of Applied Statistics 41, no. 6 (2013): 1393–94. http://dx.doi.org/10.1080/02664763.2013.859806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Guo, Tian Liang, and KanJian Zhang. "Impulsive fractional partial differential equations." Applied Mathematics and Computation 257 (April 2015): 581–90. http://dx.doi.org/10.1016/j.amc.2014.05.101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Novick-Cohen, Amy. "Ordinary and partial differential equations." Mathematical Biosciences 94, no. 1 (1989): 151–52. http://dx.doi.org/10.1016/0025-5564(89)90075-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Hernández M, Eduardo, and Hernán R. Henríquez. "Impulsive partial neutral differential equations." Applied Mathematics Letters 19, no. 3 (2006): 215–22. http://dx.doi.org/10.1016/j.aml.2005.04.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Sadhasivam, Vadivel, Jayapal Kavitha, and Muthusamy Deepa. "On the Oscillation of Non-linear Functional Partial Differential Equations." Journal of Computational Mathematica 1, no. 2 (2017): 29–39. http://dx.doi.org/10.26524/cm13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Došlý, Ondřej. "The Picone identity for a class of partial differential equations." Mathematica Bohemica 127, no. 4 (2002): 581–89. http://dx.doi.org/10.21136/mb.2002.133959.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

A A Abuharbid, Suzan, Kholoud W Saleem, and Salima Kh Ahmed. "The Oscillations for Delay Impulsive Fractional Partial Differential Equations (IFPDEs)." International Journal of Science and Research (IJSR) 11, no. 1 (2022): 1366–71. http://dx.doi.org/10.21275/mr22125031520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Prihandono, Bayu, Mariatul Kiftiah, and Yudhi Yudhi. "Existence and Uniqueness in the Linearised One and Two-dimensional Problem of Partial Differential Equations With Variational Method." Jurnal Matematika UNAND 11, no. 3 (2022): 141. http://dx.doi.org/10.25077/jmua.11.3.141-158.2022.

Pełny tekst źródła
Streszczenie:
The classical solution and the strong solution of a partial differential equation problem are continuously differentiable solutions. This solution has a derivative for a continuous infinity level. However, not all problems of partial differential equations can be easily obtained by strong solutions. Even the existence of a solution requires in-depth investigation. The variational formulation method can qualitatively analyze a single solution to a partial differential equation problem. This study provides an alternative method in analyzing the problem model of partial differential equations ana
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!