Gotowa bibliografia na temat „Particles tracking”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Particles tracking”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Particles tracking"
Jones, Benjamin T., Andrew Solow i Rubao Ji. "Resource Allocation for Lagrangian Tracking". Journal of Atmospheric and Oceanic Technology 33, nr 6 (czerwiec 2016): 1225–35. http://dx.doi.org/10.1175/jtech-d-15-0115.1.
Pełny tekst źródłaZhang, Lieping, Jinghua Nie, Shenglan Zhang, Yanlin Yu, Yong Liang i Zuqiong Zhang. "Research on the Particle Filter Single-Station Target Tracking Algorithm Based on Particle Number Optimization". Journal of Electrical and Computer Engineering 2021 (4.09.2021): 1–8. http://dx.doi.org/10.1155/2021/2838971.
Pełny tekst źródłaSiradjuddin, Indah Agustien, i Muhammad Rahmat Widyanto. "Particle Filter with Gaussian Weighting for Vehicle Tracking". Journal of Advanced Computational Intelligence and Intelligent Informatics 15, nr 6 (20.08.2011): 681–86. http://dx.doi.org/10.20965/jaciii.2011.p0681.
Pełny tekst źródłaSun, Qi Yuan, Liu Sheng Li i Zuo Liang Chao. "Target Tracking Based on Particle Filter with Multi-Path Particles". Applied Mechanics and Materials 130-134 (październik 2011): 3306–10. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3306.
Pełny tekst źródłaLi, Tao, i Qi Yuan Sun. "A Visual Tracking Based on Particle Filter of Multi-Algorithm Fusion". Applied Mechanics and Materials 513-517 (luty 2014): 2893–96. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.2893.
Pełny tekst źródłaWang, Lian-Ping, i D. E. Stock. "Numerical Simulation of Heavy Particle Dispersion Time Step and Nonlinear Drag Considerations". Journal of Fluids Engineering 114, nr 1 (1.03.1992): 100–106. http://dx.doi.org/10.1115/1.2909983.
Pełny tekst źródłaMüller, Dennis, Andreas Rausch, Olga Dolnik i Thomas Schanze. "Comparing human and algorithmic tracking of subviral particles in fluorescence microscopic image sequences". Current Directions in Biomedical Engineering 3, nr 2 (7.09.2017): 543–47. http://dx.doi.org/10.1515/cdbme-2017-0114.
Pełny tekst źródłaYao, Hai Tao, Hai Qiang Chen i Tuan Fa Qin. "Niche PSO Particle Filter with Particles Fusion for Target Tracking". Applied Mechanics and Materials 239-240 (grudzień 2012): 1368–72. http://dx.doi.org/10.4028/www.scientific.net/amm.239-240.1368.
Pełny tekst źródłaZhu, Hong Bo, Hai Zhao, Dan Liu i Chun He Song. "Compressed Iterative Particle Filter for Target Tracking". Applied Mechanics and Materials 55-57 (maj 2011): 91–94. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.91.
Pełny tekst źródłaChen, Zhimin, Mengchu Tian, Yuming Bo i Xiaodong Ling. "Infrared small target detection and tracking algorithm based on new closed-loop control particle filter". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, nr 4 (30.01.2018): 1435–56. http://dx.doi.org/10.1177/0954410017753445.
Pełny tekst źródłaRozprawy doktorskie na temat "Particles tracking"
Hosack, Michael G. "Optimization of particle tracking for experiment E683 at Fermi National Laboratory". Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941370.
Pełny tekst źródłaDepartment of Physics and Astronomy
Huck, Peter Dearborn. "Particle dynamics in turbulence : from the role of inhomogeneity and anisotropy to collective effects". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN073/document.
Pełny tekst źródłaTurbulence is well known for its ability to efficiently disperse matter, whether it be atmospheric pollutants or gasoline in combustion motors. Two considerations are fundamental when considering such situations. First, the underlying flow may have a strong influence of the behavior of the dispersed particles. Second, the local concentration of particles may enhance or impede the transport properties of turbulence. This dissertation addresses these points separately through the experimental study of two different turbulent flows. The first experimental device used is the so-called von K\'arm\'an flow which consists of an enclosed vessel filled with water that is forced by two counter rotating disks creating a strongly inhomogeneous and anisotropic turbulence. Two high-speed cameras permitted the creation a trajectory data base particles that were both isodense and heavier than water but were smaller than the smallest turbulent scales. The trajectories of this data base permitted a study of the turbulent kinetic energy budget which was shown to directly related to the transport properties of the turbulent flow. The heavy particles illustrate the role of flow anisotropy in the dispersive dynamics of particles dominated by effects related to their inertia. The second flow studied was a wind tunnel seeded with micrometer sized water droplets which was used to study the effects of local concentration of the settling velocities of these particles. A model based on theoretical multi-phase methods was developed in order to take into account the role of collective effects on sedimentation in a turbulent flow. The theoretical results emphasize the role of coupling between the underlying flow and the dispersed phase
Magnusson, Klas E. G. "Segmentation and tracking of cells and particles in time-lapse microscopy". Doctoral thesis, KTH, Signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196911.
Pełny tekst źródłaInom biologi används många olika typer av mikroskopi för att studera celler. Det finns många typer av genomlysningsmikroskopi, där ljus passerar genom cellerna, som kan användas utan färgning eller andra åtgärder som riskerar att skada cellerna. Det finns också fluorescensmikroskopi där fluorescerande proteiner eller färger förs in i cellerna eller i delar av cellerna, så att de emitterar ljus av en viss våglängd då de belyses med ljus av en annan våglängd. Många fluorescensmikroskop kan ta bilder på flera olika djup i ett prov och på så sätt bygga upp en tre-dimensionell bild av provet. Fluorescensmikroskopi kan även användas för att studera partiklar, som exempelvis virus, inuti celler. Moderna mikroskop har ofta digitala kameror eller liknande utrustning för att ta bilder och spela in bildsekvenser. När biologer gör experiment på celler spelar de ofta in bildsekvenser eller sekvenser av tre-dimensionella volymer för att se hur cellerna beter sig när de utsätts för olika läkemedel, odlingssubstrat, eller andra yttre faktorer. Tidigare har analysen av inspelad data ofta gjorts manuellt, men detta är mycket tidskrävande och resultaten blir ofta subjektiva och svåra att reproducera. Därför finns det ett stort behov av teknik för automatiserad analys av bildsekvenser med celler och partiklar inuti celler. Sådan teknik behövs framförallt inom biologisk forskning och utveckling av läkemedel. Men tekniken skulle också kunna användas kliniskt, exempelvis för att skräddarsy en cancerbehandling till en enskild patient genom att utvärdera olika behandlingar på celler från en biopsi. I denna avhandling presenteras algoritmer för att hitta celler och partiklar i bilder, och för att beräkna trajektorier som visar hur de har förflyttat sig under ett experiment. Vi har utvecklat ett komplett system som kan hitta och följa celler i alla vanligt förekommande typer av mikroskopi. Vi valde ut och vidareutvecklade ett antal existerande segmenteringsalgoritmer, och skapade på så sätt ett heltäckande verktyg för att hitta cellkonturer. För att länka ihop de segmenterade objekten till trajektorier utvecklade vi en ny länkningsalgoritm. Algoritmen lägger till trajektorier en och en med hjälp av dynamisk programmering, och har många fördelar jämfört med tidigare algoritmer. Bland annat är den snabb, den beräknar trajektorier som är optimala över hela bildsekvensen, och den kan hantera fall då flera celler felaktigt segmenterats som ett objekt. För att kunna använda information om objektens hastighet vid länkningen utvecklade vi en metod där objektens positioner förbehandlas med hjälp av ett filter innan länkningen utförs. Detta är betydelsefullt för följning av vissa partiklar inuti celler och för följning av cellkärnor i vissa embryon. Vi har utvecklat en mjukvara med öppen källkod, som innehåller alla verktyg som krävs för att analysera bildsekvenser med celler eller partiklar. Den har verktyg för segmentering och följning av objekt, optimering av inställningar, manuell korrektion, och analys av konturer och trajektorier. Vi utvecklade mjukvaran i samarbete med biologer som använde den i sin forskning. Mjukvaran har redan använts för dataanalys i ett antal biologiska publikationer. Vårt system har även uppnått enastående resultat i tre internationella objektiva jämförelser av system för följning av celler.
QC 20161125
Veerasamy, Saravanan. "Valdiation of BaBar tracking software using lambda hyperon". Thesis, University of Iowa, 2007. http://ir.uiowa.edu/etd/141.
Pełny tekst źródłaTrenkmann, Ines, Daniela Täuber, Michael Bauer, Jörg Schuster, Sangho Bok, Shubhra Gangopadhyay i Christian von Borczyskowski. "Investigations of solid liquid interfaces in ultra-thin liquid films via single particle tracking of silica particles". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191734.
Pełny tekst źródłaTrenkmann, Ines, Jörg Schuster, Shubhra Gangopadhyay i Christian von Borczyskowski. "Investigation of solid liquid interface in ultra-thin liquid films via single particle tracking of colloidal particles". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191812.
Pełny tekst źródłaTrenkmann, Ines, Daniela Täuber, Michael Bauer, Jörg Schuster, Sangho Bok, Shubhra Gangopadhyay i Christian von Borczyskowski. "Investigations of solid liquid interfaces in ultra-thin liquid films via single particle tracking of silica particles". Diffusion fundamentals 11 (2009) 108, S. 1-12, 2009. https://ul.qucosa.de/id/qucosa%3A14082.
Pełny tekst źródłaTrenkmann, Ines, Jörg Schuster, Shubhra Gangopadhyay i Christian von Borczyskowski. "Investigation of solid liquid interface in ultra-thin liquid films via single particle tracking of colloidal particles". Diffusion fundamentals 11 (2009) 115, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14089.
Pełny tekst źródłaHeidernätsch, Mario, Michael Bauer, Daniela Täuber, Günter Radons i Christian von Borcyskowski. "An advanced method of tracking temporarily invisible particles in video imaging". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191774.
Pełny tekst źródłaHeidernätsch, Mario, Michael Bauer, Daniela Täuber, Günter Radons i Christian von Borcyskowski. "An advanced method of tracking temporarily invisible particles in video imaging". Diffusion fundamentals 11 (2009) 111, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14085.
Pełny tekst źródłaKsiążki na temat "Particles tracking"
library, Wiley online, red. Single particle tracking and single molecule energy transfer. Weinheim: Wiley-VCH, 2010.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Fuzzy logic particle tracking velocimetry. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Particle displacement tracking for PIV. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaM, Bright Michelle, Skoch Gary J i NASA Glenn Research Center, red. An investigation of surge in a high-speed centrifugal compressor using digital PIV. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Particle displacement tracking applied to air flows. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaIbrahim, Muhammad N. Application of tomographic techniques to particle tracking. Manchester: UMIST, 1997.
Znajdź pełny tekst źródłaAdam, Marion A. Mixing simulations based on particle tracking data. Manchester: UMIST, 1996.
Znajdź pełny tekst źródłaStone, Lawrence D., Roy L. Streit i Stephen L. Anderson. Introduction to Bayesian Tracking and Particle Filters. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32242-6.
Pełny tekst źródłaFigari, Rodolfo, i Alessandro Teta. Quantum Dynamics of a Particle in a Tracking Chamber. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40916-5.
Pełny tekst źródłaFrühwirth, Rudolf, i Are Strandlie. Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65771-0.
Pełny tekst źródłaCzęści książek na temat "Particles tracking"
Metcalfe, Guy. "Tracking Particles in Tumbling Containers". W IUTAM Symposium on Mechanics of Granular and Porous Materials, 287–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5520-5_26.
Pełny tekst źródłaChen, Huiying, i Youfu Li. "Optimized Particles for 3-D Tracking". W Intelligent Robotics and Applications, 749–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16584-9_71.
Pełny tekst źródłaMartinez, Brais, Marc Vivet i Xavier Binefa. "Compatible Particles for Part-Based Tracking". W Articulated Motion and Deformable Objects, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14061-7_1.
Pełny tekst źródłaFrühwirth, Rudolf, i Are Strandlie. "Secondary Vertex Reconstruction". W Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors, 159–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65771-0_9.
Pełny tekst źródłaSalmond, David, i Neil Gordon. "Particles and Mixtures for Tracking and Guidance". W Sequential Monte Carlo Methods in Practice, 517–32. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3437-9_25.
Pełny tekst źródłaGao, Tao, Zheng-guang Liu i Jun Zhang. "Feature Particles Tracking for the Moving Object". W Studies in Computational Intelligence, 39–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92814-0_7.
Pełny tekst źródłaZhu, Zhiren, i Jianfeng Wang. "Tracking of Fragmented Particles with Neural Networks". W Springer Series in Geomechanics and Geoengineering, 59–67. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-76528-5_6.
Pełny tekst źródłaD’Ambrosio, C., P. Destruel, U. Gensch, H. Güsten, H. Leutz, D. Puertolas, S. Schlenstedt i in. "Scintillating Fibres for Central Tracking of Charged Particles". W New Technologies for Supercolliders, 173–84. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-1360-1_13.
Pełny tekst źródłaBabai, Mohammad, Nasser Kalantar-Nayestanaki, Johan G. Messchendorp i Michael H. F. Wilkinson. "Tracking Sub-atomic Particles Through the Attribute Space". W Lecture Notes in Computer Science, 86–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18720-4_8.
Pełny tekst źródłaBiryukov, V., A. Drees, R. P. Fliller, N. Malitsky i D. Trbojevic. "Tracking Particles In Accelerator Optics With Crystal Elements". W Lecture Notes in Computer Science, 372–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47789-6_39.
Pełny tekst źródłaStreszczenia konferencji na temat "Particles tracking"
Grant, Patrick, Timo A. Nieminen, Alexander Stilgoe i Halina Rubinsztein-Dunlop. "Tracking active matter particles with DeepTrack". W Emerging Topics in Artificial Intelligence (ETAI) 2024, redaktorzy Giovanni Volpe, Joana B. Pereira, Daniel Brunner i Aydogan Ozcan, 13. SPIE, 2024. http://dx.doi.org/10.1117/12.3027939.
Pełny tekst źródłaMousavisani, Seyedmohammad, Scott D. Kelly, Sajad Kafashi i Stuart T. Smith. "Particle Tracking Velocimetry in Noisy Environment". W ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20401.
Pełny tekst źródłaGuasto, Jeffrey S., Peter Huang i Kenneth S. Breuer. "Statistical Particle Tracking Velocimetry Using Molecular and Quantum Dot Tracer Particles". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80051.
Pełny tekst źródłaDrake, Joshua B., Andrea L. Kenney, Timothy B. Morgan i Theodore J. Heindel. "Developing Tracer Particles for X-Ray Particle Tracking Velocimetry". W ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-11009.
Pełny tekst źródłaNazib, Abdullah, Chi-Min Oh i Chil-Woo Lee. "Object tracking by supported particles". W 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2014. http://dx.doi.org/10.1109/urai.2014.7057484.
Pełny tekst źródłaLin, Jian-Hung, i Keh-Chin Chang. "A Cost-Effective Search of Collision Pairs in Lagrangian Particle Tracking Method". W ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-32577.
Pełny tekst źródłaZhong, Shengtong, i Fei Hao. "Hand Tracking by Particle Filtering with Elite Particles Mean Shift". W 2008 Japan-China Joint Workshop on Frontier of Computer Science and Technology (FCST). IEEE, 2008. http://dx.doi.org/10.1109/fcst.2008.9.
Pełny tekst źródłaSnoeyink, Craig A., Gordon Christopher, Sourav Barman i Steve Wereley. "Sub-Diffraction Limit Three Dimensional Particle Tracking Velocimetry". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65522.
Pełny tekst źródłaLessard, Guillaume A., Peter M. Goodwin i James H. Werner. "Three-dimensional tracking of fluorescent particles". W Biomedical Optics 2006, redaktorzy Jörg Enderlein i Zygmunt K. Gryczynski. SPIE, 2006. http://dx.doi.org/10.1117/12.650191.
Pełny tekst źródłaYonggang Jin i F. Mokhtarian. "Towards robust head tracking by particles". W rnational Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1530529.
Pełny tekst źródłaRaporty organizacyjne na temat "Particles tracking"
Trahan, Corey, Jing-Ru Cheng i Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), styczeń 2023. http://dx.doi.org/10.21079/11681/48057.
Pełny tekst źródłasun, yipeng. A Linac Simulation Code for Macro-Particles Tracking and Steering Algorithm Implementation. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1039538.
Pełny tekst źródłaSun, Yipeng. A Linac Simulation Code for Macro-particles Tracking and Steering Algorithm Implementation. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1046379.
Pełny tekst źródłaZhelyeznyakov, Maksym. Lagrangian particle tracking applied to high-speed tomographic particle imaging velocimetry. Office of Scientific and Technical Information (OSTI), sierpień 2016. http://dx.doi.org/10.2172/1464440.
Pełny tekst źródłaO'Brien, M. Material Interface Reconstruction for Monte Carlo Particle Tracking. Office of Scientific and Technical Information (OSTI), marzec 2006. http://dx.doi.org/10.2172/895426.
Pełny tekst źródłaMestha, L. K. Particle tracking code of simulating global RF feedback. Office of Scientific and Technical Information (OSTI), wrzesień 1991. http://dx.doi.org/10.2172/5986588.
Pełny tekst źródłaB. Robinson. Particle Tracking Model and Abstraction of Transport Processes. Office of Scientific and Technical Information (OSTI), kwiecień 2000. http://dx.doi.org/10.2172/837080.
Pełny tekst źródłaB. Robinson. Particle Tracking Model and Abstraction of Transport Processes. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/839526.
Pełny tekst źródłaLiu, Xinmin, Zongli Lin i Scott Acton. A New Particle Filter Based Algorithm for Image Tracking. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2008. http://dx.doi.org/10.21236/ada501159.
Pełny tekst źródłaClaus, J. A Different Approach to Non-Linearities and Particle Tracking. Office of Scientific and Technical Information (OSTI), październik 1985. http://dx.doi.org/10.2172/1119268.
Pełny tekst źródła