Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Perireceptor events.

Artykuły w czasopismach na temat „Perireceptor events”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 16 najlepszych artykułów w czasopismach naukowych na temat „Perireceptor events”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Pelosi, Paolo. "Perireceptor events in olfaction." Journal of Neurobiology 30, no. 1 (1996): 3–19. http://dx.doi.org/10.1002/(sici)1097-4695(199605)30:1<3::aid-neu2>3.0.co;2-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Leal, W. S., H. Wojtasek, Jean-Francois Picimbon, S. Kuwaharat, H. Saito, and M. Hasegawa. "Perireceptor Events in Pheromone Perception in Scarab Beetles." Journal of Asia-Pacific Entomology 1, no. 1 (1998): 1–8. http://dx.doi.org/10.1016/s1226-8615(08)60001-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Carr, William E. S., Richard A. Gleeson, and Henry G. Trapido-Rosenthal. "The role of perireceptor events in chemosensory processes." Trends in Neurosciences 13, no. 6 (1990): 212–15. http://dx.doi.org/10.1016/0166-2236(90)90162-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pelosi, P. "The role of perireceptor events in vertebrate olfaction." Cellular and Molecular Life Sciences 58, no. 4 (2001): 503–9. http://dx.doi.org/10.1007/pl00000875.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Menco, Bert Ph M. "Ultrastructural aspects of olfactory transduction and perireceptor events." Seminars in Cell Biology 5, no. 1 (1994): 11–24. http://dx.doi.org/10.1006/scel.1994.1003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kaissling, K. E. "Olfactory Perireceptor and Receptor Events in Moths: A Kinetic Model." Chemical Senses 26, no. 2 (2001): 125–50. http://dx.doi.org/10.1093/chemse/26.2.125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kaissling, Karl-Ernst. "Olfactory perireceptor and receptor events in moths: a kinetic model revised." Journal of Comparative Physiology A 195, no. 10 (2009): 895–922. http://dx.doi.org/10.1007/s00359-009-0461-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Heydel, Jean-Marie, Alexandra Coelho, Nicolas Thiebaud, et al. "Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events." Anatomical Record 296, no. 9 (2013): 1333–45. http://dx.doi.org/10.1002/ar.22735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Derby, C. D., H. S. Cate, and L. R. Gentilcore. "Perireception in olfaction: molecular mass sieving by aesthetasc sensillar cuticle determines odorant access to receptor sites in the Caribbean spiny lobster Panulirus argus." Journal of Experimental Biology 200, no. 15 (1997): 2073–81. http://dx.doi.org/10.1242/jeb.200.15.2073.

Pełny tekst źródła
Streszczenie:
The responsiveness of chemoreceptor neurons depends on a combination of perireceptor and receptor events. Olfactory neurons of crustaceans are packaged into distinctive cuticular sensilla called aesthetascs. The cuticle of aesthetascs is thin and permeable, even though it does not contain any obvious surface pores or pore tubules. This suggests that this 'spongy' aesthetasc cuticle may act as a molecular sieve that restricts large odorant molecules from entering the sensilla and binding to the olfactory neurons. We examined whether this is so for the aesthetasc cuticle of the Caribbean spiny l
Style APA, Harvard, Vancouver, ISO itp.
10

Getchell, Thomas V., and William E. S. Carr. "Perireceptor events: chemical reception involves more than just receptors, G-proteins and second messengers." Chemical Senses 15, no. 2 (1990): 179. http://dx.doi.org/10.1093/chemse/15.2.179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Rospars, J. P., V. Krivan, and P. Lansky. "Perireceptor and Receptor Events in Olfaction. Comparison of Concentration and Flux Detectors: a Modeling Study." Chemical Senses 25, no. 3 (2000): 293–311. http://dx.doi.org/10.1093/chemse/25.3.293.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Leal, Walter Soares. "Molecules and macromolecules involved in chemical communication of scarab beetles." Pure and Applied Chemistry 73, no. 3 (2001): 613–16. http://dx.doi.org/10.1351/pac200173030613.

Pełny tekst źródła
Streszczenie:
Chemical communication involves the production and release of specific chemicals (pheromones and other semiochemicals) by the emitter, and the detection and olfactory processing of these signals leading to appropriate behavioral responses in the receiver. In contrast to most of the scarab species investigated to date, the Japanese and Osaka beetles have the ability to detect the allospecific pheromone, which plays a pivotal role in the isolation mechanism between these two species. Each species produces a single enantiomer of japonilure [(Z)-5-(dec1-enyl)oxacyclopentan-2-one], but they have ev
Style APA, Harvard, Vancouver, ISO itp.
13

Boichot, Valentin, Mariam Muradova, Clément Nivet, et al. "The role of perireceptor events in flavor perception." Frontiers in Food Science and Technology 2 (October 19, 2022). http://dx.doi.org/10.3389/frfst.2022.989291.

Pełny tekst źródła
Streszczenie:
The sensory perception of food is a complex phenomenon involving the integration of different stimuli (aroma, taste, trigeminal sensations, texture and visual). Flavor compounds activate odorant, taste and trigeminal chemoreceptors, generating a depolarization of the sensory neurons and then the consciousness of food flavor perception. Recent studies are increasingly highlighting the importance of perireceptor events, which include all the molecular events surrounding the receptors, in the modulation of flavor perception. These events affect the quantity and quality of flavor compounds in the
Style APA, Harvard, Vancouver, ISO itp.
14

Manzini, Ivan. "Perireceptor events and peripheral modulation of olfactory signals in the olfactory epithelium of vertebrates." Neuroforum, July 8, 2022. http://dx.doi.org/10.1515/nf-2022-0005.

Pełny tekst źródła
Streszczenie:
Abstract The olfactory epithelium (OE) and its associated perireceptor space, i.e., the mucus layer (ML) covering the epithelium, are the most peripheral parts of the vertebrate olfactory system. The olfactory receptor neurons (ORNs), one of the cell types of the OE, are the odorant detectors of the olfactory system. These bipolar neurons extend their apical appendages, which express odorant receptors, into the ML. The binding of odorants to odorant receptors is the initial step of odor processing. The vast majority of research on the peripheral olfactory system has focused on the ORNs and the
Style APA, Harvard, Vancouver, ISO itp.
15

Das De, Tanwee, Julien Pelletier, Satyajeet Gupta, et al. "Diel modulation of perireceptor activity influences olfactory sensitivity in diurnal and nocturnal mosquitoes." FEBS Journal, January 30, 2025. https://doi.org/10.1111/febs.17418.

Pełny tekst źródła
Streszczenie:
Olfaction and diel‐circadian rhythm regulate different behaviors, including host‐seeking, feeding, and locomotion, in mosquitoes that are important for their capacity to transmit disease. Diel‐rhythmic changes of the odorant‐binding proteins (OBPs) in olfactory organs are primarily accountable for olfactory rhythmicity. To better understand the molecular rhythm regulating nocturnal and diurnal behaviors in mosquitoes, we performed a comparative RNA‐sequencing study of the peripheral olfactory and brain tissues of female Anopheles culicifacies and Aedes aegypti. Data analysis revealed a signifi
Style APA, Harvard, Vancouver, ISO itp.
16

Paesani, Massimiliano, Arthur G. Goetzee, Sanne Abeln, and Halima Mouhib. "Odorant Binding Proteins Facilitate the Gas‐Phase Uptake of Odorants Through the Nasal Mucus." Chemistry – A European Journal, November 7, 2024. http://dx.doi.org/10.1002/chem.202403058.

Pełny tekst źródła
Streszczenie:
Mammalian odorant binding proteins (OBPs) have long been suggested to transport hydrophobic odorant molecules through the aqueous environment of the nasal mucus. While the function of OBPs as odorant transporters is supported by their hydrophobic beta‐barrel structure, no rationale has been provided on why and how these proteins facilitate the uptake of odorants from the gas phase. Here, a multi‐scale computational approach validated through available high‐resolution spectroscopy experiments reveals that the conformational space explored by carvone inside the binding cavity of porcine OBP (pOB
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!