Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Permeable reactive barrier.

Artykuły w czasopismach na temat „Permeable reactive barrier”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Permeable reactive barrier”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Thiruvenkatachari, R., S. Vigneswaran, and R. Naidu. "Permeable reactive barrier for groundwater remediation." Journal of Industrial and Engineering Chemistry 14, no. 2 (March 2008): 145–56. http://dx.doi.org/10.1016/j.jiec.2007.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schwarz, Alex O., and Bruce E. Rittmann. "The diffusion-active permeable reactive barrier." Journal of Contaminant Hydrology 112, no. 1-4 (March 2010): 155–62. http://dx.doi.org/10.1016/j.jconhyd.2009.12.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Oliveira, M., Ana Vera Machado, and Regina Nogueira. "Development of Permeable Reactive Barrier for Phosphorus Removal." Materials Science Forum 636-637 (January 2010): 1365–70. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1365.

Pełny tekst źródła
Streszczenie:
Permeable reactive barriers were developed for phosphorus removal. The barrier consists in an organic-inorganic hybrid material, which allows water and others species to flow through it, while selectively removes the contaminants. Polyethylene oxide (POE) and aluminium oxide (Al2O3) were used as the organic and the inorganic parts, respectively. The hybrid material was obtained by sol-gel reaction, using aluminium isopropoxide as inorganic percursor in order to attain Al2O3. The hybrid material produced was characterized by FT-IR spectroscopy and thermogravimetry. The previous tests for phosph
Style APA, Harvard, Vancouver, ISO itp.
4

Banasiak, Laura Joan, Buddhima Indraratna, Glenys Lugg, Udeshini Pathirage, Geoff McIntosh, and Neil Rendell. "Permeable reactive barrier rejuvenation by alkaline wastewater." Environmental Geotechnics 2, no. 1 (February 2015): 45–55. http://dx.doi.org/10.1680/envgeo.13.00122.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Molfetta, Antonio Di, and Rajandrea Sethi. "Clamshell excavation of a permeable reactive barrier." Environmental Geology 50, no. 3 (March 8, 2006): 361–69. http://dx.doi.org/10.1007/s00254-006-0215-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

He, Qianfeng, Shihui Si, Jun Yang, and Xiaoyu Tu. "Application of permeable reactive barrier in groundwater remediation." E3S Web of Conferences 136 (2019): 06021. http://dx.doi.org/10.1051/e3sconf/201913606021.

Pełny tekst źródła
Streszczenie:
As a new in-situ remediation of groundwater, compared with the traditional “pump and treat” technology, the permeable reactive barrier (PRB) has the advantages of low cost, no external power, the small disturbance to groundwater, small secondary pollution and long-term operation, this paper introduces the basic concept of PRB, technical principle, structure type, the principle of active materials selection and mechanisms of remediation, design and installation factors, it provides ideas for further research and application of PRB technology in groundwater remediation projects in China.
Style APA, Harvard, Vancouver, ISO itp.
7

Morgan, Lynn A., Don Ficklen, and Mary Knowles. "Site characterization to support permeable reactive barrier design." Remediation Journal 15, no. 4 (2005): 63–71. http://dx.doi.org/10.1002/rem.20060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lee, Jejung, Andrew J. Graettinger, John Moylan, and Howard W. Reeves. "Directed site exploration for permeable reactive barrier design." Journal of Hazardous Materials 162, no. 1 (February 2009): 222–29. http://dx.doi.org/10.1016/j.jhazmat.2008.05.026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tigue, April Anne, Roy Alvin Malenab, and Michael Angelo Promentilla. "A systematic mapping study on the development of permeable reactive barrier for acid mine drainage treatment." MATEC Web of Conferences 268 (2019): 06019. http://dx.doi.org/10.1051/matecconf/201926806019.

Pełny tekst źródła
Streszczenie:
Acid mine drainage is a result of exposure of sulfide ore and minerals to water and oxygen. This environmental pollutant has been considered the second biggest environmental problem after global warming. On the other hand, permeable reactive barrier is an emerging remediation technology which can be used to treat acid mine drainage. However, the effectiveness of this proposed remediation technology greatly depends on the reactive media. Also, treatment of acid mine drainage using permeable reactive barrier is still in the infancy stage, and long-term performance is still unknown. Hence, this s
Style APA, Harvard, Vancouver, ISO itp.
10

Richards, Peter. "Seven‐year performance evaluation of a permeable reactive barrier." Remediation Journal 18, no. 3 (March 2008): 63–78. http://dx.doi.org/10.1002/rem.20172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Muegge, John P., and Paul W. Hadley. "An evaluation of permeable reactive barrier projects in California." Remediation Journal 20, no. 1 (December 2009): 41–57. http://dx.doi.org/10.1002/rem.20228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ludwig, Ralph D., Rick G. McGregor, David W. Blowes, Shawn G. Benner, and Keith Mountjoy. "A Permeable Reactive Barrier for Treatment of Heavy Metals." Ground Water 40, no. 1 (January 2002): 59–66. http://dx.doi.org/10.1111/j.1745-6584.2002.tb02491.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Vesela, Lenka, Jan Nemecek, Martina Siglova, and Martin Kubal. "The biofiltration permeable reactive barrier: Practical experience from Synthesia." International Biodeterioration & Biodegradation 58, no. 3-4 (October 2006): 224–30. http://dx.doi.org/10.1016/j.ibiod.2006.06.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Grajales-Mesa, S. Johana, Grzegorz Malina, Ewa Kret, and Tadeusz Szklarczyk. "Designing a permeable reactive barrier to treat TCE contaminated groundwater: Numerical modelling." Tecnología y ciencias del agua 11, no. 3 (May 1, 2020): 78–106. http://dx.doi.org/10.24850/j-tyca-2020-03-03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Morrison, Stan. "Performance Evaluation of a Permeable Reactive Barrier Using Reaction Products as Tracers." Environmental Science & Technology 37, no. 10 (May 2003): 2302–9. http://dx.doi.org/10.1021/es0209565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zawierucha, Iwona, and Anna Nowik-Zajac. "Evaluation of permeable sorption barriers for removal of Cd(II) and Zn(II) ions from contaminated groundwater." Water Science and Technology 80, no. 3 (August 1, 2019): 448–57. http://dx.doi.org/10.2166/wst.2019.288.

Pełny tekst źródła
Streszczenie:
Abstract In the present study, continuous-flow column experiments (using glass column, Tygon tubing, and peristaltic pump Manostat Carter) were conducted to investigate the performance of permeable sorption barriers for the removal of cadmium and zinc from synthetic groundwater. Zeolite, ion-exchange resin and granular activated carbon as reactive materials were used. The effectiveness and stability of reactive materials were studied by monitoring of changes of metal ions concentration and selected background anions and cations concentration in groundwater during its flow through columns. Resu
Style APA, Harvard, Vancouver, ISO itp.
17

Indraratna, Buddhima, Punyama Udeshini Pathirage, and Laura Joan Banasiak. "Remediation of acidic groundwater by way of permeable reactive barrier." Environmental Geotechnics 4, no. 4 (August 2017): 284–98. http://dx.doi.org/10.1680/envgeo.14.00014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kennedy, Lonnie G., and Jess W. Everett. "Field application of biogeochemical reductive dechlorination by permeable reactive barrier." International Journal of Environment and Waste Management 14, no. 4 (2014): 323. http://dx.doi.org/10.1504/ijewm.2014.066590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Richards, Peter. "Construction of a permeable reactive barrier in a residential neighborhood." Remediation Journal 12, no. 4 (September 2002): 65–79. http://dx.doi.org/10.1002/rem.10046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Golab, Alexandra N., Buddhima Indraratna, Mark A. Peterson, and Stephen Hay. "Design of a Permeable Reactive Barrier to Remediate Acidic Groundwater." ASEG Extended Abstracts 2006, no. 1 (December 2006): 1–3. http://dx.doi.org/10.1071/aseg2006ab051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Hosseini, S. Mossa, B. Ataie-Ashtiani, and M. Kholghi. "Bench-Scaled Nano-Fe0 Permeable Reactive Barrier for Nitrate Removal." Ground Water Monitoring & Remediation 31, no. 4 (July 19, 2011): 82–94. http://dx.doi.org/10.1111/j.1745-6592.2011.01352.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Slater, Lee, and Andrew Binley. "Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods." GEOPHYSICS 68, no. 3 (May 2003): 911–21. http://dx.doi.org/10.1190/1.1581043.

Pełny tekst źródła
Streszczenie:
The permeable reactive barrier (PRB) is a promising in‐situ technology for treatment of hydrocarbon‐contaminated groundwater. A PRB is typically composed of granular iron which degrades chlorinated organics into potentially nontoxic dehalogenated organic compounds and inorganic chloride. Geophysical methods may assist assessment of in‐situ barrier integrity and evaluation of long‐term barrier performance. The highly conductive granular iron makes the PRB an excellent target for conductivity imaging methods. In addition, electrochemical storage of charge at the iron–solution interface generates
Style APA, Harvard, Vancouver, ISO itp.
23

Xue, Fengjiao, Yujie Yan, Ming Xia, Faheem Muhammad, Lin Yu, Feng Xu, YanChyuan Shiau, Dongwei Li, and Binquan Jiao. "Electro-kinetic remediation of chromium-contaminated soil by a three-dimensional electrode coupled with a permeable reactive barrier." RSC Advances 7, no. 86 (2017): 54797–805. http://dx.doi.org/10.1039/c7ra10913j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ribeiro, André, André Mota, Margarida Soares, Carlos Castro, Jorge Araújo, and Joana Carvalho. "Lead (II) Removal from Contaminated Soils by Electrokinetic Remediation Coupled with Modified Eggshell Waste." Key Engineering Materials 777 (August 2018): 256–61. http://dx.doi.org/10.4028/www.scientific.net/kem.777.256.

Pełny tekst źródła
Streszczenie:
Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially lead (II) contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm-1was applied and was used an EGGIF/soil ratio of 30 g kg
Style APA, Harvard, Vancouver, ISO itp.
25

Fronczyk, Joanna, Katarzyna Pawluk, and Marta Michniak. "Application of permeable reactive barriers near roads for chloride ions removal." Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation 42, no. 2 (January 1, 2010): 249–59. http://dx.doi.org/10.2478/v10060-008-0083-5.

Pełny tekst źródła
Streszczenie:
Application of permeable reactive barriers near roads for chloride ions removal One of the most critical sources of pollutants are road run-offs. Road run-off is a complex mixture of toxicants e.g. heavy metals, de-icing agents, organic compounds and water suspensions of solid substances. One of the most negative impact on the environment has sodium chloride which is used as de-icing agent. In the case of incorrect environment protection in the vicinity of roads pollutants may migrate to groundwater causing hazard to sources of potable water. One of the methods to prevent the migration of poll
Style APA, Harvard, Vancouver, ISO itp.
26

Kim, Young-Hun, and Myung-Chul Kim. "Development of Activity Enhanced Zero Valent Metals for Permeable Reactive Barrier." Journal of Environmental Science International 12, no. 2 (February 1, 2003): 201–5. http://dx.doi.org/10.5322/jes.2003.12.2.201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Chiemchaisri, Chart, Wilai Chiemchaisri, and Chayanid Witthayapirom. "Remediation of MSW landfill leachate by permeable reactive barrier with vegetation." Water Science and Technology 71, no. 9 (March 10, 2015): 1389–97. http://dx.doi.org/10.2166/wst.2015.111.

Pełny tekst źródła
Streszczenie:
This research was conducted to investigate in situ treatment of leachate by pilot-scale permeable reactive barrier (PRB) with vegetation. Two different types of PRB media, with and without the presence of ferric chloride sludge, for the removal of pollutants were examined. The composite media of PRB comprised a clay and sand mixture of 40:60%w/w (system 1) and a clay, ferric chloride sludge and sand mixture of 30:10:60%w/w (system 2). The system was operated at a hydraulic loading rate of 0.028 m3/m2.d and hydraulic retention time of 10 days. The results showed that the performance of system 2
Style APA, Harvard, Vancouver, ISO itp.
28

Moraci, Nicola, Stefania Bilardi, and Paolo S. Calabrò. "Fe0/pumice mixtures: from laboratory tests to permeable reactive barrier design." Environmental Geotechnics 4, no. 4 (August 2017): 245–56. http://dx.doi.org/10.1680/jenge.15.00002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Serrenho, A., O. Fenton, M. Rodgers, and M. G. Healy. "Laboratory study of a denitrification system using a permeable reactive barrier." Advances in Animal Biosciences 1, no. 1 (April 2010): 88. http://dx.doi.org/10.1017/s2040470010002311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Morrison, Stan J., Paul S. Mushovic, and Preston L. Niesen. "Early Breakthrough of Molybdenum and Uranium in a Permeable Reactive Barrier." Environmental Science & Technology 40, no. 6 (March 2006): 2018–24. http://dx.doi.org/10.1021/es052128s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Courcelles, Benoît, Arezou Modaressi-Farahmand-Razavi, Daniel Gouvenot, and Annette Esnault-Filet. "Influence of Precipitates on Hydraulic Performance of Permeable Reactive Barrier Filters." International Journal of Geomechanics 11, no. 2 (April 2011): 142–51. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000098.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ono, Yusaku, Mikio Kawasaki, Yoichi Watanabe, Masato Yamada, Kazuto Endo, and Yoshiro Ono. "Horizontal Permeable Reactive Barrier for Improving the Water Quality within Landfills." Journal of the Japan Society of Waste Management Experts 19, no. 3 (2008): 197–211. http://dx.doi.org/10.3985/jswme.19.197.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Van Nooten, Thomas, Dirk Springael, and Leen Bastiaens. "Microbial Community Characterization in a Pilot-Scale Permeable Reactive Iron Barrier." Environmental Engineering Science 27, no. 3 (March 2010): 287–92. http://dx.doi.org/10.1089/ees.2009.0271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Bartlett, T. R., and S. J. Morrison. "Tracer Method to Determine Residence Time in a Permeable Reactive Barrier." Ground Water 47, no. 4 (July 2009): 598–604. http://dx.doi.org/10.1111/j.1745-6584.2009.00544.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Johnson, R. L., R. B. Thoms, R. O’Brien Johnson, J. T. Nurmi, and P. G. Tratnyek. "Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier." Ground Water Monitoring & Remediation 28, no. 3 (June 2008): 56–64. http://dx.doi.org/10.1111/j.1745-6592.2008.00203.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Mumford, K. A., J. L. Rayner, I. Snape, and G. W. Stevens. "Hydraulic performance of a permeable reactive barrier at Casey Station, Antarctica." Chemosphere 117 (December 2014): 223–31. http://dx.doi.org/10.1016/j.chemosphere.2014.06.091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Yang, Ji, Yuling Guo, Decai Xu, Limei Cao, and Jinping Jia. "A controllable Fe0–C permeable reactive barrier for 1,4-dichlorobenzene dechlorination." Chemical Engineering Journal 203 (September 2012): 166–73. http://dx.doi.org/10.1016/j.cej.2012.07.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Folch, Albert, Marcel Vilaplana, Leila Amado, Teresa Vicent, and Glòria Caminal. "Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer." Journal of Hazardous Materials 262 (November 2013): 554–60. http://dx.doi.org/10.1016/j.jhazmat.2013.09.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Schwarz, Alex, and Norma Pérez. "Long-term operation of a permeable reactive barrier with diffusive exchange." Journal of Environmental Management 284 (April 2021): 112086. http://dx.doi.org/10.1016/j.jenvman.2021.112086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Meng, Ruihong, Tan Chen, Yaxin Zhang, Wenjing Lu, Yanting Liu, Tianchu Lu, Yanjun Liu, and Hongtao Wang. "Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium(v) from aqueous solution and real contaminated groundwater." RSC Advances 8, no. 38 (2018): 21480–94. http://dx.doi.org/10.1039/c8ra02172d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Peng, Shengjie, Xiaodong Wang, and Xiaohui Zhang. "Research progress of in-situ remediation of polluted soil and groundwater by electrokinetic and permeable reaction barrier." E3S Web of Conferences 143 (2020): 02043. http://dx.doi.org/10.1051/e3sconf/202014302043.

Pełny tekst źródła
Streszczenie:
The combination of electrokinetic remediation and permeable reactive barrier (EK-PRB combined remediation technology) is a new green technology for in-situ removal of soil and groundwater pollutants. This technology combines the advantages of electrokinetic remediation and permeable reactive barrier technology, and can deal with different types of organic and inorganic pollutants. It has the characteristics of convenient installation, simple operation, no secondary pollution, etc., and has broad development and application prospect. This paper introduces the technical principle of EK-PRB, summ
Style APA, Harvard, Vancouver, ISO itp.
42

Seethamraju, Sindhu, Praveen C. Ramamurthy, and Giridhar Madras. "Reactive interlayer based ultra-low moisture permeable membranes for organic photovoltaic encapsulation." Physical Chemistry Chemical Physics 17, no. 35 (2015): 23165–72. http://dx.doi.org/10.1039/c5cp04255k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Cui, Kang Ping, and Ben Shan Sun. "Removal of BTEX Using Adsorptive Biological Reactive Barrier." Advanced Materials Research 1092-1093 (March 2015): 897–902. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.897.

Pełny tekst źródła
Streszczenie:
Adsorptive biological reactive barrier comprising medium sand-bentonite-microorganism for removing simulated groundwater BTEX (benzene, toluene, ethyl benzene, xylene) of different concentrations has been investigated with the variance of filling media ratio, and the dependence of BTEX removal efficiency in groundwater on electron acceptor was also studied through adding nitrate. The results show that the optimum volume ratio of bentonite-medium sand is 20:80, with a permeable reactive barrier permeability coefficient of 2.01 × 10-5 m/s and effective porosity of 16.71%. The addition of nitrate
Style APA, Harvard, Vancouver, ISO itp.
44

Mieles, John, and Hongbin Zhan. "Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system." Journal of Contaminant Hydrology 134-135 (June 2012): 54–68. http://dx.doi.org/10.1016/j.jconhyd.2012.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

NAKASHIMA, Makoto, and Masanori NEGISHI. "Long-term performance evaluation of permeable reactive barrier using zero-valent iron." Journal of Groundwater Hydrology 51, no. 4 (2009): 331–47. http://dx.doi.org/10.5917/jagh.51.331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

SOEJIMA, Takamichi, Hiroshi TERAO, Masako ITOH, and Satoshi IMAMURA. "Long term remediation effects of permeable reactive barrier for nitrate contaminated groundwater." Journal of Groundwater Hydrology 54, no. 3 (2012): 139–50. http://dx.doi.org/10.5917/jagh.54.139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Cai, Chang Feng, Fu Zhang Qi, Xiao Liang Lin, and Lin Jiang. "Treatment of Simulated Acid Mine Drainage by Permeable Reactive Barrier: Column Study." Advanced Materials Research 989-994 (July 2014): 966–69. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.966.

Pełny tekst źródła
Streszczenie:
Three polyvinyl chloride (PVC) columns filled with different ratios of reactive media, ceramsite and corncob, were conducted to assess the treatment performance of simulated acid mine drainage (AMD). The results indicated that the columns could effectively remove sulfate and metal ions from AMD with the removal efficiency of 57.7% and 96.5% respectively. The removal efficiency decreased with the increasing inlet velocity and at the same sample ports the sulfate and metal ions concentrations at the velocity of 1 ml/min were lower than that at the velocity of 2ml/min and 3ml/min.
Style APA, Harvard, Vancouver, ISO itp.
48

Mumford, K. A., S. M. Powell, J. L. Rayner, G. Hince, I. Snape, and G. W. Stevens. "Evaluation of a permeable reactive barrier to capture and degrade hydrocarbon contaminants." Environmental Science and Pollution Research 22, no. 16 (April 23, 2015): 12298–308. http://dx.doi.org/10.1007/s11356-015-4438-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Zhao, Shuning, Li Fan, Mingyuan Zhou, Xuefeng Zhu, and Xiuli Li. "Remediation of Copper Contaminated Kaolin by Electrokinetics Coupled with Permeable Reactive Barrier." Procedia Environmental Sciences 31 (2016): 274–79. http://dx.doi.org/10.1016/j.proenv.2016.02.036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Guerin, Turlough F., Stuart Horner, Terry McGovern, and Brent Davey. "An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater." Water Research 36, no. 1 (January 2002): 15–24. http://dx.doi.org/10.1016/s0043-1354(01)00233-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!