Gotowa bibliografia na temat „Permutation groups”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Permutation groups”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Permutation groups"

1

Niemenmaa, Markku. "Decomposition of Transformation Groups of Permutation Machines." Fundamenta Informaticae 10, no. 4 (1987): 363–67. http://dx.doi.org/10.3233/fi-1987-10403.

Pełny tekst źródła
Streszczenie:
By a permutation machine we mean a triple (Q,S,F), where Q and S are finite sets and F is a function Q × S → Q which defines a permutation on Q for every element from S. These permutations generate a permutation group G and by considering the structure of G we can obtain efficient ways to decompose the transformation group (Q,G). In this paper we first consider the situation where G is half-transitive and after this we show how to use our result in the general non-transitive case.
Style APA, Harvard, Vancouver, ISO itp.
2

Burns, J. M., B. Goldsmith, B. Hartley, and R. Sandling. "On quasi-permutation representations of finite groups." Glasgow Mathematical Journal 36, no. 3 (1994): 301–8. http://dx.doi.org/10.1017/s0017089500030901.

Pełny tekst źródła
Streszczenie:
In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. H
Style APA, Harvard, Vancouver, ISO itp.
3

Bigelow, Stephen. "Supplements of bounded permutation groups." Journal of Symbolic Logic 63, no. 1 (1998): 89–102. http://dx.doi.org/10.2307/2586590.

Pełny tekst źródła
Streszczenie:
AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise st
Style APA, Harvard, Vancouver, ISO itp.
4

Tovstyuk, K. D., C. C. Tovstyuk, and O. O. Danylevych. "The Permutation Group Theory and Electrons Interaction." International Journal of Modern Physics B 17, no. 21 (2003): 3813–30. http://dx.doi.org/10.1142/s0217979203021812.

Pełny tekst źródła
Streszczenie:
The new mathematical formalism for the Green's functions of interacting electrons in crystals is constructed. It is based on the theory of Green's functions and permutation groups. We constructed a new object of permutation groups, which we call double permutation (DP). DP allows one to take into consideration the symmetry of the ground state as well as energy and momentum conservation in every virtual interaction. We developed the classification of double permutations and proved the theorem, which allows the selection of classes of associated double permutations (ADP). The Green's functions a
Style APA, Harvard, Vancouver, ISO itp.
5

Cohen, Stephen D. "Permutation polynomials and primitive permutation groups." Archiv der Mathematik 57, no. 5 (1991): 417–23. http://dx.doi.org/10.1007/bf01246737.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Senashov, Vasily S., Konstantin A. Filippov, and Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography." E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.

Pełny tekst źródła
Streszczenie:
The representation of a group G in the form of regular permutations is widely used for studying the structure of finite groups, in particular, parameters like the group density function. This is related to the increased potential of computer technologies for conducting calculations. The work addresses the problem of calculation regular permutations with restrictions on the structure of the degree and order of permutations. The considered regular permutations have the same nontrivial order, which divides the degree of the permutation. Examples of the application of permutation groups in crystal
Style APA, Harvard, Vancouver, ISO itp.
7

Boy de la Tour, Thierry, and Mnacho Echenim. "On leaf permutative theories and occurrence permutation groups." Electronic Notes in Theoretical Computer Science 86, no. 1 (2003): 61–75. http://dx.doi.org/10.1016/s1571-0661(04)80653-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cameron, Peter J. "Cofinitary Permutation Groups." Bulletin of the London Mathematical Society 28, no. 2 (1996): 113–40. http://dx.doi.org/10.1112/blms/28.2.113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lucchini, A., F. Menegazzo, and M. Morigi. "Generating Permutation Groups." Communications in Algebra 32, no. 5 (2004): 1729–46. http://dx.doi.org/10.1081/agb-120029899.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kearnes, Keith A. "Collapsing permutation groups." Algebra Universalis 45, no. 1 (2001): 35–51. http://dx.doi.org/10.1007/s000120050200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Permutation groups"

1

Cox, Charles. "Infinite permutation groups containing all finitary permutations." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401538/.

Pełny tekst źródła
Streszczenie:
Groups naturally occu as the symmetries of an object. This is why they appear in so many different areas of mathematics. For example we find class grops in number theory, fundamental groups in topology, and amenable groups in analysis. In this thesis we will use techniques and approaches from various fields in order to study groups. This is a 'three paper' thesis, meaning that the main body of the document is made up of three papers. The first two of these look at permutation groups which contain all permutations with finite support, the first focussing on decision problems and the second on t
Style APA, Harvard, Vancouver, ISO itp.
2

Hyatt, Matthew. "Quasisymmetric Functions and Permutation Statistics for Coxeter Groups and Wreath Product Groups." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/609.

Pełny tekst źródła
Streszczenie:
Eulerian quasisymmetric functions were introduced by Shareshian and Wachs in order to obtain a q-analog of Euler's exponential generating function formula for the Eulerian polynomials. They are defined via the symmetric group, and applying the stable and nonstable principal specializations yields formulas for joint distributions of permutation statistics. We consider the wreath product of the cyclic group with the symmetric group, also known as the group of colored permutations. We use this group to introduce colored Eulerian quasisymmetric functions, which are a generalization of Eulerian qua
Style APA, Harvard, Vancouver, ISO itp.
3

Kuzucuoglu, M. "Barely transitive permutation groups." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lajeunesse, Lisa (Lisa Marie) Carleton University Dissertation Mathematics and Statistics. "Models and permutation groups." Ottawa, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Schaefer, Artur. "Synchronizing permutation groups and graph endomorphisms." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9912.

Pełny tekst źródła
Streszczenie:
The current thesis is focused on synchronizing permutation groups and on graph endo- morphisms. Applying the implicit classification of rank 3 groups, we provide a bound on synchronizing ranks of rank 3 groups, at first. Then, we determine the singular graph endomorphisms of the Hamming graph and related graphs, count Latin hypercuboids of class r, establish their relation to mixed MDS codes, investigate G-decompositions of (non)-synchronizing semigroups, and analyse the kernel graph construction used in the theorem of Cameron and Kazanidis which identifies non-synchronizing transformations wi
Style APA, Harvard, Vancouver, ISO itp.
6

Fawcett, Joanna Bethia. "Bases of primitive permutation groups." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/252304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Spiga, Pablo. "P elements in permutation groups." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

McNab, C. A. "Some problems in permutation groups." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382633.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Astles, David Christopher. "Permutation groups acting on subsets." Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yang, Keyan. "On Orbit Equivalent Permutation Groups." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1222455916.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Permutation groups"

1

Passman, Donald S. Permutation groups. Dover Publications, Inc., 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cameron, Peter J. Oligomorphic permutation groups. Cambridge University Press, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cameron, Peter J. Permutation groups. Cambridge University Press, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dixon, John D., and Brian Mortimer. Permutation Groups. Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0731-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Brian, Mortimer, ed. Permutation groups. Springer, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Charles, Holland W., ed. Ordered groups and infinite permutation groups. Kluwer Academic Publishers, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1965-, Bhattacharjee M., ed. Notes on infinite permutation groups. Springer, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Holland, W. Charles, ed. Ordered Groups and Infinite Permutation Groups. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-3443-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bhattacharjee, Meenaxi, Dugald Macpherson, Rögnvaldur G. Möller, and Peter M. Neumann. Notes on Infinite Permutation Groups. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0092550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Butler, Gregory, ed. Fundamental Algorithms for Permutation Groups. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54955-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Permutation groups"

1

Camina, Alan, and Barry Lewis. "Permutation Groups." In Springer Undergraduate Mathematics Series. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-600-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mazzola, Guerino, Maria Mannone, and Yan Pang. "Permutation Groups." In Computational Music Science. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42937-3_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Roman, Steven. "Permutation Groups." In Fundamentals of Group Theory. Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8301-6_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Paulsen, William. "Permutation Groups." In Abstract Algebra. Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315370972-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Isaacs, I. "Permutation groups." In Graduate Studies in Mathematics. American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/092/08.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Isaacs, I. "Permutation groups." In Graduate Studies in Mathematics. American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/100/06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Khattar, Dinesh, and Neha Agrawal. "Permutation Groups." In Group Theory. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21307-6_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kurzweil, Hans, and Bernd Stellmacher. "Permutation Groups." In The Theory of Finite Groups. Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21768-1_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Birken, Philipp. "Permutation Groups." In Student Solutions Manual, 10th ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003182306-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tapp, Kristopher. "Permutation Groups." In Symmetry. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51669-7_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Permutation groups"

1

Camps-Moreno, Eduardo, Hiram H. López, Eliseo Sarmiento, and Ivan Soprunov. "On the Affine Permutation Group of Certain Decreasing Cartesian Codes." In 2024 IEEE International Symposium on Information Theory (ISIT). IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Banerjee, Shuvayan, Sudhansh Peddabomma, Radhendushka Srivastava, James Saunderson, and Ajit Rajwade. "Identification and Correction of Permutation Errors in Compressed Sensing-Based Group Testing." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10888147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Babai, L., E. Luks, and A. Seress. "Permutation groups in NC." In the nineteenth annual ACM conference. ACM Press, 1987. http://dx.doi.org/10.1145/28395.28439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Babai, L., E. M. Luks, and A. Seress. "Fast management of permutation groups." In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science. IEEE, 1988. http://dx.doi.org/10.1109/sfcs.1988.21943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kabanov, Vladislav, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Graphs and Transitive Permutation Groups." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498638.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Banica, Teodor, Julien Bichon, and Benoît Collins. "Quantum permutation groups: a survey." In Noncommutative Harmonic Analysis with Applications to Probability. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Luks, Eugene M., Ferenc Rákóczi, and Charles R. B. Wright. "Computing normalizers in permutation p-groups." In the international symposium. ACM Press, 1994. http://dx.doi.org/10.1145/190347.190390.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Luks, Eugene M., and Pierre Mckenzie. "Fast parallel computation with permutation groups." In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985). IEEE, 1985. http://dx.doi.org/10.1109/sfcs.1985.26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fiat, A., S. Moses, A. Shamir, I. Shimshoni, and G. Tardos. "Planning and learning in permutation groups." In 30th Annual Symposium on Foundations of Computer Science. IEEE, 1989. http://dx.doi.org/10.1109/sfcs.1989.63490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Egner, Sebastian, and Markus Püschel. "Solving puzzles related to permutation groups." In the 1998 international symposium. ACM Press, 1998. http://dx.doi.org/10.1145/281508.281611.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Permutation groups"

1

Huang, Jonathan, Carlos Guestrin, and Leonidas Guibas. Inference for Distributions over the Permutation Group. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada488051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ramm-Granberg, Tynan, F. Rocchio, Catharine Copass, Rachel Brunner, and Eric Nelsen. Revised vegetation classification for Mount Rainier, North Cascades, and Olympic national parks: Project summary report. National Park Service, 2021. http://dx.doi.org/10.36967/nrr-2284511.

Pełny tekst źródła
Streszczenie:
Field crews recently collected more than 10 years of classification and mapping data in support of the North Coast and Cascades Inventory and Monitoring Network (NCCN) vegetation maps of Mount Rainier (MORA), Olympic (OLYM), and North Cascades (NOCA) National Parks. Synthesis and analysis of these 6000+ plots by Washington Natural Heritage Program (WNHP) and Institute for Natural Resources (INR) staff built on the foundation provided by the earlier classification work of Crawford et al. (2009). These analyses provided support for most of the provisional plant associations in Crawford et al. (2
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!