Artykuły w czasopismach na temat „Phage interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Phage interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Stone, Edel, Katrina Campbell, Irene Grant, and Olivia McAuliffe. "Understanding and Exploiting Phage–Host Interactions." Viruses 11, no. 6 (2019): 567. http://dx.doi.org/10.3390/v11060567.
Pełny tekst źródłaSacher, Jessica C., Muhammad Afzal Javed, Clay S. Crippen, et al. "Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress." Viruses 13, no. 10 (2021): 1955. http://dx.doi.org/10.3390/v13101955.
Pełny tekst źródłaBlasche, Sonja, Stefan Wuchty, Seesandra V. Rajagopala, and Peter Uetz. "The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli." Journal of Virology 87, no. 23 (2013): 12745–55. http://dx.doi.org/10.1128/jvi.02495-13.
Pełny tekst źródłaZhang, Mingyue, Yanan Zhou, Xinyuan Cui, and Lifeng Zhu. "The Potential of Co-Evolution and Interactions of Gut Bacteria–Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis." Microorganisms 12, no. 4 (2024): 713. http://dx.doi.org/10.3390/microorganisms12040713.
Pełny tekst źródłaKaźmierczak, Zuzanna, Joanna Majewska, Magdalena Milczarek, Barbara Owczarek, and Krystyna Dąbrowska. "Circulation of Fluorescently Labelled Phage in a Murine Model." Viruses 13, no. 2 (2021): 297. http://dx.doi.org/10.3390/v13020297.
Pełny tekst źródłaDicks, Leon M. T., and Wian Vermeulen. "Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages." Viruses 16, no. 3 (2024): 478. http://dx.doi.org/10.3390/v16030478.
Pełny tekst źródłaDunne, Matthew, Mario Hupfeld, Jochen Klumpp, and Martin Loessner. "Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages." Viruses 10, no. 8 (2018): 397. http://dx.doi.org/10.3390/v10080397.
Pełny tekst źródłaTan, Demeng, Lone Gram, and Mathias Middelboe. "Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum." Applied and Environmental Microbiology 80, no. 10 (2014): 3128–40. http://dx.doi.org/10.1128/aem.03544-13.
Pełny tekst źródłaMulla, Yuval, Janina Müller, Denny Trimcev, and Tobias Bollenbach. "Extreme diversity of phage amplification rates and phage–antibiotic interactions revealed by PHORCE." PLOS Biology 23, no. 4 (2025): e3003065. https://doi.org/10.1371/journal.pbio.3003065.
Pełny tekst źródłaDeveau, Hélène, Marie-Rose Van Calsteren, and Sylvain Moineau. "Effect of Exopolysaccharides on Phage-Host Interactions in Lactococcus lactis." Applied and Environmental Microbiology 68, no. 9 (2002): 4364–69. http://dx.doi.org/10.1128/aem.68.9.4364-4369.2002.
Pełny tekst źródłaLoessner, Holger, Insea Schlattmeier, Marie Anders-Maurer, et al. "Kinetic Fingerprinting Links Bacteria-Phage Interactions with Emergent Dynamics: Rapid Depletion of Klebsiella pneumoniae Indicates Phage Synergy." Antibiotics 9, no. 7 (2020): 408. http://dx.doi.org/10.3390/antibiotics9070408.
Pełny tekst źródłaWANG, WENDI. "DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT." Journal of Biological Systems 25, no. 04 (2017): 697–713. http://dx.doi.org/10.1142/s0218339017400010.
Pełny tekst źródłaKraus, Samuel, Megan L. Fletcher, Urszula Łapińska, et al. "Phage-induced efflux down-regulation boosts antibiotic efficacy." PLOS Pathogens 20, no. 6 (2024): e1012361. http://dx.doi.org/10.1371/journal.ppat.1012361.
Pełny tekst źródłaRomero, Dennis A., Damian Magill, Anne Millen, Philippe Horvath, and Christophe Fremaux. "Dairy lactococcal and streptococcal phage–host interactions: an industrial perspective in an evolving phage landscape." FEMS Microbiology Reviews 44, no. 6 (2020): 909–32. http://dx.doi.org/10.1093/femsre/fuaa048.
Pełny tekst źródłaDuplessis, Martin, Céline M. Lévesque, and Sylvain Moineau. "Characterization of Streptococcus thermophilus Host Range Phage Mutants." Applied and Environmental Microbiology 72, no. 4 (2006): 3036–41. http://dx.doi.org/10.1128/aem.72.4.3036-3041.2006.
Pełny tekst źródłaStachurska, Xymena, Krzysztof Cendrowski, Kamila Pachnowska, Agnieszka Piegat, Ewa Mijowska, and Paweł Nawrotek. "Nanoparticles Influence Lytic Phage T4-like Performance In Vitro." International Journal of Molecular Sciences 23, no. 13 (2022): 7179. http://dx.doi.org/10.3390/ijms23137179.
Pełny tekst źródłaTan, Demeng, Amalie Dahl, and Mathias Middelboe. "Vibriophages Differentially Influence Biofilm Formation by Vibrio anguillarum Strains." Applied and Environmental Microbiology 81, no. 13 (2015): 4489–97. http://dx.doi.org/10.1128/aem.00518-15.
Pełny tekst źródłaTan, Demeng, Yiyuan Zhang, Mengjun Cheng, et al. "Characterization of Klebsiella pneumoniae ST11 Isolates and Their Interactions with Lytic Phages." Viruses 11, no. 11 (2019): 1080. http://dx.doi.org/10.3390/v11111080.
Pełny tekst źródłaLi, Na, Yigang Zeng, Bijie Hu, et al. "Interactions between the Prophage 919TP and Its Vibrio cholerae Host: Implications of gmd Mutation for Phage Resistance, Cell Auto-Aggregation, and Motility." Viruses 13, no. 12 (2021): 2342. http://dx.doi.org/10.3390/v13122342.
Pełny tekst źródłaZhang, Bingyan, Jiayi Xu, Xiaoqi He, Yigang Tong, and Huiying Ren. "Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis." Microorganisms 10, no. 8 (2022): 1590. http://dx.doi.org/10.3390/microorganisms10081590.
Pełny tekst źródłaJdeed, Ghadeer, Bogdana Kravchuk, and Nina V. Tikunova. "Factors Affecting Phage–Bacteria Coevolution Dynamics." Viruses 17, no. 2 (2025): 235. https://doi.org/10.3390/v17020235.
Pełny tekst źródłaMarsh, P., and E. M. H. Wellington. "Phage-host interactions in soil." FEMS Microbiology Ecology 15, no. 1-2 (1994): 99–107. http://dx.doi.org/10.1111/j.1574-6941.1994.tb00234.x.
Pełny tekst źródłaCenens, William, Angella Makumi, Mehari Tesfazgi Mebrhatu, Rob Lavigne, and Abram Aertsen. "Phage–host interactions during pseudolysogeny." Bacteriophage 3, no. 1 (2013): e25029. http://dx.doi.org/10.4161/bact.25029.
Pełny tekst źródłaSupina, Brittany S. I., and Jonathan J. Dennis. "The Current Landscape of Phage–Antibiotic Synergistic (PAS) Interactions." Antibiotics 14, no. 6 (2025): 545. https://doi.org/10.3390/antibiotics14060545.
Pełny tekst źródłaMi, Yanze, Yile He, Jinhui Mi, et al. "Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage–Host Interactions." International Journal of Molecular Sciences 24, no. 21 (2023): 15594. http://dx.doi.org/10.3390/ijms242115594.
Pełny tekst źródłaAttai, Hedieh, and Pamela J. B. Brown. "Isolation and Characterization T4- and T7-Like Phages that Infect the Bacterial Plant Pathogen Agrobacterium tumefaciens." Viruses 11, no. 6 (2019): 528. http://dx.doi.org/10.3390/v11060528.
Pełny tekst źródłaEsteves, Nathaniel C., Danielle N. Bigham, and Birgit E. Scharf. "Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi." PLOS Pathogens 19, no. 8 (2023): e1011537. http://dx.doi.org/10.1371/journal.ppat.1011537.
Pełny tekst źródłaMaffei, Enea, Aisylu Shaidullina, Marco Burkolter, et al. "Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection." PLOS Biology 19, no. 11 (2021): e3001424. http://dx.doi.org/10.1371/journal.pbio.3001424.
Pełny tekst źródłaSchiettekatte, Olivier, Elsa Beurrier, Luisa De Sordi, and Anne Chevallereau. "“French Phage Network” Annual Conference—Seventh Meeting Report." Viruses 15, no. 2 (2023): 495. http://dx.doi.org/10.3390/v15020495.
Pełny tekst źródłaClokie, Martha, and Thomas Sicheritz-Ponte´n. "Lungs, Liposomes, Libraries, and Likely Interactions Between Phages and Eukaryotic Cells." PHAGE 4, no. 1 (2023): 1–2. http://dx.doi.org/10.1089/phage.2023.29041.editorial.
Pełny tekst źródłaKarlsson, Fredrik, Carl A. K. Borrebaeck, Nina Nilsson, and Ann-Christin Malmborg-Hager. "The Mechanism of Bacterial Infection by Filamentous Phages Involves Molecular Interactions between TolA and Phage Protein 3 Domains." Journal of Bacteriology 185, no. 8 (2003): 2628–34. http://dx.doi.org/10.1128/jb.185.8.2628-2634.2003.
Pełny tekst źródłaTaslem Mourosi, Jarin, Ayobami Awe, Wenzheng Guo, et al. "Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key “Blueprint” for Reprogramming Phage Host Range." International Journal of Molecular Sciences 23, no. 20 (2022): 12146. http://dx.doi.org/10.3390/ijms232012146.
Pełny tekst źródłaMäntynen, Sari, Elina Laanto, Hanna M. Oksanen, Minna M. Poranen, and Samuel L. Díaz-Muñoz. "Black box of phage–bacterium interactions: exploring alternative phage infection strategies." Open Biology 11, no. 9 (2021): 210188. http://dx.doi.org/10.1098/rsob.210188.
Pełny tekst źródłaCairns, Johannes, Sebastián Coloma, Kaarina Sivonen, and Teppo Hiltunen. "Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability." Royal Society Open Science 3, no. 12 (2016): 160839. http://dx.doi.org/10.1098/rsos.160839.
Pełny tekst źródłaMohammed, Manal, and Beata Orzechowska. "Characterisation of Phage Susceptibility Variation in Salmonellaenterica Serovar Typhimurium DT104 and DT104b." Microorganisms 9, no. 4 (2021): 865. http://dx.doi.org/10.3390/microorganisms9040865.
Pełny tekst źródłaNilsson, Emelie, Oliver W. Bayfield, Daniel Lundin, Alfred A. Antson, and Karin Holmfeldt. "Diversity and Host Interactions among Virulent and Temperate Baltic Sea Flavobacterium Phages." Viruses 12, no. 2 (2020): 158. http://dx.doi.org/10.3390/v12020158.
Pełny tekst źródłaCarroll-Portillo, Amanda, and Henry C. Lin. "Exploring Mucin as Adjunct to Phage Therapy." Microorganisms 9, no. 3 (2021): 509. http://dx.doi.org/10.3390/microorganisms9030509.
Pełny tekst źródłaBeggs, Grace A., and Bonnie L. Bassler. "Phage small proteins play large roles in phage–bacterial interactions." Current Opinion in Microbiology 80 (August 2024): 102519. http://dx.doi.org/10.1016/j.mib.2024.102519.
Pełny tekst źródłaKoonjan, Shazeeda, Carlos Cardoso Palacios, and Anders S. Nilsson. "Population Dynamics of a Two Phages–One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57." Pharmaceuticals 15, no. 3 (2022): 268. http://dx.doi.org/10.3390/ph15030268.
Pełny tekst źródłaMolina, Felipe, Manuel Menor-Flores, Lucía Fernández, Miguel A. Vega-Rodríguez, and Pilar García. "Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-06422-1.
Pełny tekst źródłade Jonge, Patrick A., Dieuwke J. C. Smit Sibinga, Oliver A. Boright, et al. "Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions." Journal of Virology 94, no. 23 (2020). http://dx.doi.org/10.1128/jvi.01559-20.
Pełny tekst źródłaLucia-Sanz, Adriana, Shengyun Peng, Joey Leung, Animesh Gupta, Justin R. Meyer, and Joshua S. Weitz. "Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics." Virus Evolution, November 29, 2024. http://dx.doi.org/10.1093/ve/veae104.
Pełny tekst źródłaGuliy, Olga I., and Stella S. Evstigneeva. "Bacteria- and Phage-Derived Proteins in Phage Infection." Frontiers in Bioscience-Landmark 30, no. 2 (2025). https://doi.org/10.31083/fbl24478.
Pełny tekst źródłaKauffman, Kathryn M., William K. Chang, Julia M. Brown, et al. "Resolving the structure of phage–bacteria interactions in the context of natural diversity." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-021-27583-z.
Pełny tekst źródłaBürkle, Magdalena, Imke H. E. Korf, Anne Lippegaus, et al. "Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa." ISME Journal, April 6, 2025. https://doi.org/10.1093/ismejo/wraf065.
Pełny tekst źródłaChatterjee, Anushila, Julia L. E. Willett, Uyen Thy Nguyen, et al. "Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions." mBio 11, no. 2 (2020). http://dx.doi.org/10.1128/mbio.03120-19.
Pełny tekst źródłaMonshizadeh, Mahsa, Sara Zomorodi, Kate Mortensen, and Yuzhen Ye. "Revealing bacteria-phage interactions in human microbiome through the CRISPR-Cas immune systems." Frontiers in Cellular and Infection Microbiology 12 (September 28, 2022). http://dx.doi.org/10.3389/fcimb.2022.933516.
Pełny tekst źródłaLi, Dandan, Na Li, Yu Chen, et al. "Phage-host interaction in Pseudomonas aeruginosa clinical isolates with functional and altered quorum sensing systems." Applied and Environmental Microbiology, March 4, 2025. https://doi.org/10.1128/aem.02402-24.
Pełny tekst źródłaHernández Villamizar, Santiago, Luis A. Chica Cárdenas, Laura T. Morales Mancera, and Martha J. Vives Florez. "Anaerobiosis, a neglected factor in phage-bacteria interactions." Applied and Environmental Microbiology, November 15, 2023. http://dx.doi.org/10.1128/aem.01491-23.
Pełny tekst źródłaFu, Kailai, Jiaqi Cui, Yao Li та ін. "Escherichia coli phage ΦPNJ-9 adheres to mucus via a variant Hoc protein". Journal of Virology, 26 грудня 2024. https://doi.org/10.1128/jvi.01789-24.
Pełny tekst źródła