Artykuły w czasopismach na temat „Photocatalysts”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Photocatalysts”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chuaicham, Chitiphon, Jirawat Trakulmututa, Kaiqian Shu, et al. "Recent Clay-Based Photocatalysts for Wastewater Treatment." Separations 10, no. 2 (2023): 77. http://dx.doi.org/10.3390/separations10020077.
Pełny tekst źródłaWang, Shifa, Peilin Mo, Dengfeng Li, and Asad Syed. "Intelligent Algorithms Enable Photocatalyst Design and Performance Prediction." Catalysts 14, no. 4 (2024): 217. http://dx.doi.org/10.3390/catal14040217.
Pełny tekst źródłaYou, Wei. "Research Progresses and Development Trends of High-Efficacy Photocatalysts." Applied Mechanics and Materials 496-500 (January 2014): 532–35. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.532.
Pełny tekst źródłaYanda, Bhupesh Pydiraju, Dharani Sathwik Ram Panchagnula, Terry J. Gentry, and Sreeram Vaddiraju. "Photocatalysis-Assisted Water Remediation Using Porous Nanowire Foams." Water 17, no. 4 (2025): 462. https://doi.org/10.3390/w17040462.
Pełny tekst źródłaRocha, Rafael Lisandro P., Luzia Maria C. Honorio, Roosevelt Delano de S. Bezerra, et al. "Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants." Minerals 12, no. 5 (2022): 525. http://dx.doi.org/10.3390/min12050525.
Pełny tekst źródłaTeye, Godfred Kwesi, Jingyu Huang, Yi Li, Ke Li, Lei Chen, and Williams Kweku Darkwah. "Photocatalytic Degradation of Sulfamethoxazole, Nitenpyram and Tetracycline by Composites of Core Shell g-C3N4@ZnO, and ZnO Defects in Aqueous Phase." Nanomaterials 11, no. 10 (2021): 2609. http://dx.doi.org/10.3390/nano11102609.
Pełny tekst źródłaLi, Xue, Ulla Simon, Maged F. Bekheet, and Aleksander Gurlo. "Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications." Energies 15, no. 15 (2022): 5607. http://dx.doi.org/10.3390/en15155607.
Pełny tekst źródłaPrakash, Jai. "Mechanistic Insights into Graphene Oxide Driven Photocatalysis as Co-Catalyst and Sole Catalyst in Degradation of Organic Dye Pollutants." Photochem 2, no. 3 (2022): 651–71. http://dx.doi.org/10.3390/photochem2030043.
Pełny tekst źródłaChang, Haoxu, Yayang Wang, Panzhe Qiao, Bo Sun, Zhengbang Wang та Fei Song. "Formulating InVO4/α-Fe2O3 Heterojunction Composites for Photocatalytic Tetracycline Hydrochloride Degradation". Nanomaterials 14, № 17 (2024): 1441. http://dx.doi.org/10.3390/nano14171441.
Pełny tekst źródłaThoda, Olga, Anastasia M. Moschovi, Konstantinos Miltiadis Sakkas, Ekaterini Polyzou, and Iakovos Yakoumis. "Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis." Applied Sciences 13, no. 11 (2023): 6858. http://dx.doi.org/10.3390/app13116858.
Pełny tekst źródłaAhmad, Abdul Latif, Jing Yi Chin, Abdul Majeed Alaudin, and Norhanis Farhana Mohd Masri. "Influence of TiO2 Phases and Operational Parameters on Photocatalytic Degradation of Methyl Orange." Journal of Physical Science 35, no. 2 (2024): 65–82. http://dx.doi.org/10.21315/jps2024.35.2.5.
Pełny tekst źródłaBitsos, Dimitrios Rafail, Apostolos Salepis, Emmanouil Orfanos, et al. "Exploring Metal- and Porphyrin-Modified TiO2-Based Photocatalysts for Efficient and Sustainable Hydrogen Production." Inorganics 13, no. 4 (2025): 121. https://doi.org/10.3390/inorganics13040121.
Pełny tekst źródłaNgwenya, Phephile, Lehlogonolo S. Tabana, Shepherd M. Tichapondwa, and Evans M. N. Chirwa. "Occurrence, Ecotoxicity, and Photocatalytic Remediation of Antiretroviral Drugs in Global Surface Water Matrices." Catalysts 15, no. 4 (2025): 381. https://doi.org/10.3390/catal15040381.
Pełny tekst źródłaGao, Lan, Elyes Nefzaoui, Frédéric Marty, et al. "TiO2-Coated ZnO Nanowire Arrays: A Photocatalyst with Enhanced Chemical Corrosion Resistance." Catalysts 11, no. 11 (2021): 1289. http://dx.doi.org/10.3390/catal11111289.
Pełny tekst źródłaSingh, Gurpinder, Manpreet Kaur Ubhi, Kiran Jeet, Chetan Singla, and Manpreet Kaur. "A Review on Impacting Parameters for Photocatalytic Degradation of Organic Effluents by Ferrites and Their Nanocomposites." Processes 11, no. 6 (2023): 1727. http://dx.doi.org/10.3390/pr11061727.
Pełny tekst źródłaGusarov, Sergey. "Advances in Computational Methods for Modeling Photocatalytic Reactions: A Review of Recent Developments." Materials 17, no. 9 (2024): 2119. http://dx.doi.org/10.3390/ma17092119.
Pełny tekst źródłaKudo, Akihiko. "Photocatalysis and solar hydrogen production." Pure and Applied Chemistry 79, no. 11 (2007): 1917–27. http://dx.doi.org/10.1351/pac200779111917.
Pełny tekst źródłaFadlun, Wan. "Carbon Dioxide Reduction to Solar Fuels via Iron-Based Nanocomposite: Strategies to Intensify the Photoactivity." Journal of Computational and Theoretical Nanoscience 17, no. 2 (2020): 654–62. http://dx.doi.org/10.1166/jctn.2020.8789.
Pełny tekst źródłaGu, Zhanyong, Mengdie Jin, Xin Wang, et al. "Recent Advances in g-C3N4-Based Photocatalysts for NOx Removal." Catalysts 13, no. 1 (2023): 192. http://dx.doi.org/10.3390/catal13010192.
Pełny tekst źródłaLi, Bin, Xin Yi Wang, and Xiao Gang Yang. "Effect of Mixing Ratio and Doping Acid on the Photocatalytic Properties of PANI-BiVO4 Composites." Key Engineering Materials 727 (January 2017): 866–69. http://dx.doi.org/10.4028/www.scientific.net/kem.727.866.
Pełny tekst źródłaAbed, Jehad, Nitul S. Rajput, Amine El Moutaouakil, and Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting." Nanomaterials 10, no. 11 (2020): 2260. http://dx.doi.org/10.3390/nano10112260.
Pełny tekst źródłaSingh, Seema, Aniket Chaki, Devesh Pratap Chand, Avinash Raghuwanshi, Pramod Kumar Singh, and Hari Mahalingham. "A novel polystyrene-supported titanium dioxide photocatalyst for degradation of methyl orange and methylene blue dyes under UV irradiation." Journal of Chemical Engineering 28, no. 1 (2014): 9–13. http://dx.doi.org/10.3329/jce.v28i1.18103.
Pełny tekst źródłaShanmugaratnam, Sivagowri, Elilan Yogenthiran, Ranjit Koodali, Punniamoorthy Ravirajan, Dhayalan Velauthapillai, and Yohi Shivatharsiny. "Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production." Energies 14, no. 24 (2021): 8265. http://dx.doi.org/10.3390/en14248265.
Pełny tekst źródłaChe, Ruijie, Yining Zhu, Biyang Tu, et al. "A Meta-Analysis of Influencing Factors on the Activity of BiVO4-Based Photocatalysts." Nanomaterials 13, no. 16 (2023): 2352. http://dx.doi.org/10.3390/nano13162352.
Pełny tekst źródłaHu, Xuefeng, Ting Luo, Yuhan Lin, and Mina Yang. "Construction of Novel Z-Scheme g-C3N4/AgBr-Ag Composite for Efficient Photocatalytic Degradation of Organic Pollutants under Visible Light." Catalysts 12, no. 11 (2022): 1309. http://dx.doi.org/10.3390/catal12111309.
Pełny tekst źródłaFeliczak-Guzik, Agnieszka. "Nanomaterials as Photocatalysts—Synthesis and Their Potential Applications." Materials 16, no. 1 (2022): 193. http://dx.doi.org/10.3390/ma16010193.
Pełny tekst źródłaZelekew, Osman Ahmed, and Yi-nan Wu. "Metal Doped-MoS2/g-C3N4 Nanocomposites for Antibiotics Degradation with Photo-Fenton Reaction Process: Defect Engineering, Synergistic Effects, and Degradation Mechanisms." ECS Meeting Abstracts MA2024-01, no. 13 (2024): 1072. http://dx.doi.org/10.1149/ma2024-01131072mtgabs.
Pełny tekst źródłaPei, Junxiang, Haofeng Li, Songlin Zhuang, Dawei Zhang, and Dechao Yu. "Recent Advances in g-C3N4 Photocatalysts: A Review of Reaction Parameters, Structure Design and Exfoliation Methods." Catalysts 13, no. 11 (2023): 1402. http://dx.doi.org/10.3390/catal13111402.
Pełny tekst źródłaTachibana, Yasuhiro. "Photo-Generated Charge Carrier Dynamics in Metal Oxide Photocatalysts." ECS Meeting Abstracts MA2023-02, no. 47 (2023): 2335. http://dx.doi.org/10.1149/ma2023-02472335mtgabs.
Pełny tekst źródłaPark, Hyunwoong. "(Invited) A Wired Photosynthesis of Formate from Aqueous CO2 Using Earth Abundant Catalysts." ECS Meeting Abstracts MA2018-01, no. 31 (2018): 1834. http://dx.doi.org/10.1149/ma2018-01/31/1834.
Pełny tekst źródłaPark, Hyunwoong. "(Invited) Unassisted Conversion of Carbon Dioxide and Water into Aliphatic Acids Using Copper and Iron Oxide Photocatalyst Film at Solar-to-Chemical Conversion Efficiency of ~5%." ECS Meeting Abstracts MA2024-02, no. 59 (2024): 3976. https://doi.org/10.1149/ma2024-02593976mtgabs.
Pełny tekst źródłaTekinTekinTekinTekin, Derya. "Production, characterization of Fe3O4@CuO composite photocatalysts and determination of photocatalytic activity on Rhodamine B." Brilliant Engineering 1, no. 4 (2020): 26–29. http://dx.doi.org/10.36937/ben.2020.004.005.
Pełny tekst źródłaPorcu, Stefania, Stefania Maloccu, Angela Corona, et al. "Visible Light-Mediated Inactivation of H1N1 Virus UsingPolymer-Based Heterojunction Photocatalyst." Polymers 15, no. 11 (2023): 2536. http://dx.doi.org/10.3390/polym15112536.
Pełny tekst źródłaDutta, Vishal, Ankush Chauhan, Ritesh Verma, C. Gopalkrishnan, and Van-Huy Nguyen. "Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications." Beilstein Journal of Nanotechnology 13 (November 11, 2022): 1316–36. http://dx.doi.org/10.3762/bjnano.13.109.
Pełny tekst źródłaParida, Vishal Kumar, Suneel Kumar Srivastava, Ashok Kumar Gupta, and Akash Rawat. "A review on nanomaterial-based heterogeneous photocatalysts for removal of contaminants from water." Materials Express 13, no. 1 (2023): 1–38. http://dx.doi.org/10.1166/mex.2023.2319.
Pełny tekst źródłaCheng, Yan, Chenxi Li, Shindume Lomboleni Hamukwaya, Guangdong Huang, and Zengying Zhao. "Synthesis of Composite Titanate Photocatalyst via Molten Salt Processing and Its Enhanced Photocatalytic Properties." Nanomaterials 13, no. 22 (2023): 2944. http://dx.doi.org/10.3390/nano13222944.
Pełny tekst źródłaWang, Wanting, Yuanting Wu, Long Chen, Chenggang Xu, Changqing Liu, and Chengxin Li. "Fabrication of Z-Type TiN@(A,R)TiO2 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity." Nanomaterials 13, no. 13 (2023): 1984. http://dx.doi.org/10.3390/nano13131984.
Pełny tekst źródłaWei, Xiao, Kai-Xue Wang, Xing-Xing Guo, and Jie-Sheng Chen. "Single-site photocatalysts with a porous structure." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2143 (2012): 2099–112. http://dx.doi.org/10.1098/rspa.2012.0071.
Pełny tekst źródłaKhan, Zeeshan, Juhana Jaafar, Azmat Ali Khan, et al. "MXENE AS FUTURE POTENTIAL PHOTOACTIVE CO-CATALYST MATERIAL FOR EFFICIENT VISIBLE LIGHT PHOTODEGRADATION OF PERSISTENT ORGANIC CONTAMINANTS: A REVIEW." ASEAN Engineering Journal 14, no. 4 (2024): 101–11. https://doi.org/10.11113/aej.v14.21320.
Pełny tekst źródłaRadetić, Lucija, Jan Marčec, Ivan Brnardić, Tihana Čižmar, and Ivana Grčić. "Study of Photocatalytic Oxidation of Micropollutants in Water and Intensification Case Study." Catalysts 12, no. 11 (2022): 1463. http://dx.doi.org/10.3390/catal12111463.
Pełny tekst źródłaYang, Xiaoyong, Deobrat Singh, and Rajeev Ahuja. "Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting." Catalysts 10, no. 10 (2020): 1111. http://dx.doi.org/10.3390/catal10101111.
Pełny tekst źródłaHong, Jong-Wook. "Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production." Catalysts 11, no. 7 (2021): 848. http://dx.doi.org/10.3390/catal11070848.
Pełny tekst źródłaShen, Yan Qin, and Hai Liang Wu. "The Photo-Catalytic Activity of Cu2+-Doped TiO2 and Applications in the Self-Cleaning Performance of Textile Wall Fabrics." Advanced Materials Research 557-559 (July 2012): 1475–78. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.1475.
Pełny tekst źródłaMottola, Stefania, Antonietta Mancuso, Olga Sacco, Vincenzo Vaiano, and Iolanda De Marco. "Photocatalytic Systems Based on ZnO Produced by Supercritical Antisolvent for Ceftriaxone Degradation." Catalysts 13, no. 8 (2023): 1173. http://dx.doi.org/10.3390/catal13081173.
Pełny tekst źródłaZhou, Pengfei, Fei Wang, Yanbai Shen, et al. "Removal of Emerging Organic Pollutants by Zeolite Mineral (Clinoptilolite) Composite Photocatalysts in Drinking Water and Watershed Water." Catalysts 14, no. 4 (2024): 216. http://dx.doi.org/10.3390/catal14040216.
Pełny tekst źródłaSivaraman, Chandhinipriya, Shankar Vijayalakshmi, Estelle Leonard, Suresh Sagadevan, and Ranjitha Jambulingam. "Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials." Catalysts 12, no. 5 (2022): 544. http://dx.doi.org/10.3390/catal12050544.
Pełny tekst źródłaTigabu Bekele, Mekonnen. "An overview of the developments of nanotechnology and heterogeneous photocatalysis in the presence of metal nanoparticles." Journal of Plant Science and Phytopathology 6, no. 3 (2022): 103–14. http://dx.doi.org/10.29328/journal.jpsp.1001083.
Pełny tekst źródłaGoodarzi, Nahal, Zahra Ashrafi-Peyman, Elahe Khani, and Alireza Z. Moshfegh. "Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation." Catalysts 13, no. 7 (2023): 1102. http://dx.doi.org/10.3390/catal13071102.
Pełny tekst źródłaYoung, C., T. M. Lim, K. Chiang, and R. Amal. "Photocatalytic degradation of toluene by platinized titanium dioxide photocatalysts." Water Science and Technology 50, no. 4 (2004): 251–56. http://dx.doi.org/10.2166/wst.2004.0276.
Pełny tekst źródłaMeng, Fancang, Wenhao Wang, Yang Zeng, et al. "Attachable, Self-Healing and Durable TiO2/rGO/PVA Photocatalytic Hydrogel Band for Dye Degradation." Journal of Materials Chemistry C, 2024. http://dx.doi.org/10.1039/d4tc02634a.
Pełny tekst źródła