Artykuły w czasopismach na temat „Physics, Low Temperature|Physics, Condensed Matter”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Physics, Low Temperature|Physics, Condensed Matter.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Physics, Low Temperature|Physics, Condensed Matter”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Feng, Yejun, R. Jaramillo, Jiyang Wang, Yang Ren i T. F. Rosenbaum. "Invited Article: High-pressure techniques for condensed matter physics at low temperature". Review of Scientific Instruments 81, nr 4 (kwiecień 2010): 041301. http://dx.doi.org/10.1063/1.3400212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hallock, Bob, i Mikko Paalanenn. "New developments in low temperature physics". Journal of Physics: Condensed Matter 21, nr 16 (20.03.2009): 160402. http://dx.doi.org/10.1088/0953-8984/21/16/160402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

von Keudell, A., i V. Schulz-von der Gathen. "Foundations of low-temperature plasma physics—an introduction". Plasma Sources Science and Technology 26, nr 11 (12.10.2017): 113001. http://dx.doi.org/10.1088/1361-6595/aa8d4c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bauer, E., G. Hilscher, H. Kaldarar, H. Michor, E. W. Scheidt, P. Rogl, A. Gribanov i Y. Seropegin. "Formation and low temperature physics of". Journal of Magnetism and Magnetic Materials 310, nr 2 (marzec 2007): e73-e75. http://dx.doi.org/10.1016/j.jmmm.2006.10.273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Maris, Humphrey J. "Phonon physics and low temperature detectors of dark matter". Journal of Low Temperature Physics 93, nr 3-4 (listopad 1993): 355–64. http://dx.doi.org/10.1007/bf00693446.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Richardson, Robert C., Eric N. Smith i Robert C. Dynes. "Experimental Techniques in Condensed Matter Physics at Low Temperatures". Physics Today 42, nr 10 (październik 1989): 126–27. http://dx.doi.org/10.1063/1.2811189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Behringer, R. P. "Experimental Techniques in Condensed Matter Physics at Low Temperatures". American Journal of Physics 57, nr 3 (marzec 1989): 287. http://dx.doi.org/10.1119/1.16062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ponkratov, Vladimir V., Josef Friedrich, Jane M. Vanderkooi, Alexander L. Burin i Yuri A. Berlin. "Physics of Proteins at Low Temperature". Journal of Low Temperature Physics 137, nr 3/4 (listopad 2004): 289–317. http://dx.doi.org/10.1023/b:jolt.0000049058.81275.72.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nucciotti, A. "Low Temperature Detectors for Neutrino Physics". Journal of Low Temperature Physics 176, nr 5-6 (20.12.2013): 848–59. http://dx.doi.org/10.1007/s10909-013-1006-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kibble, T. W. B., i G. R. Pickett. "Introduction. Cosmology meets condensed matter". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, nr 1877 (5.06.2008): 2793–802. http://dx.doi.org/10.1098/rsta.2008.0098.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB (‘Cosmology in the Laboratory’) that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF (‘Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology’). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting ‘Cosmology meets condensed matter’, held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
11

MORI, Nobuo. "Development of High-Pressure Technique for Low Temperature Physics. Low Temperature and High Pressure Research for Solid State Physics." Review of High Pressure Science and Technology 11, nr 3 (2001): 173–80. http://dx.doi.org/10.4131/jshpreview.11.173.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

GIULIANI, A. "CUORE: low-temperature techniques for neutrino physics". Physica B: Condensed Matter 329-333 (maj 2003): 1570–73. http://dx.doi.org/10.1016/s0921-4526(02)02299-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gusev, Yuri Vladimirovich. "The quasi-low temperature behaviour of specific heat". Royal Society Open Science 6, nr 1 (styczeń 2019): 171285. http://dx.doi.org/10.1098/rsos.171285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
A new mathematical approach to condensed matter physics, based on the finite temperature field theory, was recently proposed. The field theory is a scale-free formalism; thus, it denies absolute values of thermodynamic temperature and uses dimensionless thermal variables, which are obtained with the group velocities of sound and the interatomic distance. This formalism was previously applied to the specific heat of condensed matter and predicted its fourth power of temperature behaviour at sufficiently low temperatures, which was tested by experimental data for diamond lattice materials. The range of temperatures with the quartic law varies for different materials; therefore, it is called the quasi-low temperature regime. The quasi-low temperature behaviour of specific heat is verified here with experimental data for the fcc lattice materials, silver chloride and lithium iodide. The conjecture that the fourth order behaviour is universal for all condensed matter systems has also supported the data for glassy matter: vitreous silica. This law is long known to hold for the bcc solid helium-4. The characteristic temperatures of the threshold of the quasi-low temperature regime are found for the studied materials. The scaling in the specific heat of condensed matter is expressed by the dimensionless parameter, which is explored with the data for several glasses. The explanation of the correlation of the ‘boson peak’ temperature with the shear velocity is proposed. The critique of the Debye theory of specific heat and the Born–von Karman model of the lattice dynamics is given.
14

Vidali, Gianfranco. "Cosmic Low Temperature Physics: Making Molecules on Stardust". Journal of Low Temperature Physics 170, nr 1-2 (29.09.2012): 1–30. http://dx.doi.org/10.1007/s10909-012-0744-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kambara, Hiroshi, Tomohiro Matsui, Yasuhiro Niimi i Hiroshi Fukuyama. "Development of an ultra-low temperature scanning tunneling microscope and applications for low temperature physics". Journal of Physics and Chemistry of Solids 66, nr 8-9 (sierpień 2005): 1552–55. http://dx.doi.org/10.1016/j.jpcs.2005.05.074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tang, Shuang, i Mildred S. Dresselhaus. "Electronic properties of nano-structured bismuth-antimony materials". J. Mater. Chem. C 2, nr 24 (2014): 4710–26. http://dx.doi.org/10.1039/c4tc00146j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Bismuth antimony (Bi1−xSbx) is one of the most important materials systems for fundamental materials science, condensed matter physics, low temperature thermoelectrics, infrared applications, and beyond.
17

UWATOKO, Yoshiya, Kazuyuki MATSUBAYASHI, Takehiko MATSUMOTO, Naofumi ASO, Masakazu NISHI, Tetsuya FUJIWARA, Masato HEDO i in. "Development of Palm Cubic Anvil Apparatus for Low Temperature Physics". Review of High Pressure Science and Technology 18, nr 3 (2008): 230–36. http://dx.doi.org/10.4131/jshpreview.18.230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

TAKAHASHI, Hiroki. "Development of High-Pressure Technique for Low Temperature Physics. Low Temperature Measurements Using a Diamond Anvil Cell." Review of High Pressure Science and Technology 11, nr 3 (2001): 195–202. http://dx.doi.org/10.4131/jshpreview.11.195.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Vishnyakov i Dragan. "Coupling parameter for low-temperature plasma with condensed phase". Condensed Matter Physics 10, nr 2 (czerwiec 2007): 201. http://dx.doi.org/10.5488/cmp.10.2.201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

LARSON, M. "The science capability of the Low Temperature Microgravity Physics Facility". Physica B: Condensed Matter 329-333 (maj 2003): 1588–89. http://dx.doi.org/10.1016/s0921-4526(02)02304-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Fiorini, Ettore. "Application of Low Temperature Detectors in Physics: Yesterday, Today, Tomorrow". Journal of Low Temperature Physics 179, nr 5-6 (22.02.2014): 277–90. http://dx.doi.org/10.1007/s10909-014-1118-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Sasaki, Y., E. Hayata, T. Tanaka, H. Ito i T. Mizusaki. "Construction of ULT-MRI cryostat for ultra low temperature physics". Journal of Low Temperature Physics 138, nr 3-4 (luty 2005): 911–16. http://dx.doi.org/10.1007/s10909-005-2324-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

MORI, Nobuo. "Research Projects for Solid State Physics under High Pressure and Low Temperature." Review of High Pressure Science and Technology 11, nr 1 (2001): 44–49. http://dx.doi.org/10.4131/jshpreview.11.44.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Leiderer, Paul, Jukka Pekola i Neil Sullivan. "Special Issue: 50 Years of the Journal of Low Temperature Physics". Journal of Low Temperature Physics 197, nr 3-4 (27.09.2019): 111–12. http://dx.doi.org/10.1007/s10909-019-02235-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Collin, E., T. Moutonet, J. S. Heron, O. Bourgeois, Yu M. Bunkov i H. Godfrin. "A Tunable Hybrid Electro-magnetomotive NEMS Device for Low Temperature Physics". Journal of Low Temperature Physics 162, nr 5-6 (28.10.2010): 653–60. http://dx.doi.org/10.1007/s10909-010-0257-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Jennings, B. K., i A. Schwenk. "Modern topics in theoretical nuclear physics". Canadian Journal of Physics 85, nr 3 (1.03.2007): 219–30. http://dx.doi.org/10.1139/p07-044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this review, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention on the strong connections to many-body atomic and condensed-matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics. PACS Nos.: 21.60.–n, 21.30.Fe
27

Kolev, St, G. J. M. Hagelaar, G. Fubiani i J.-P. Boeuf. "Physics of a magnetic barrier in low-temperature bounded plasmas: insight from particle-in-cell simulations". Plasma Sources Science and Technology 21, nr 2 (1.03.2012): 025002. http://dx.doi.org/10.1088/0963-0252/21/2/025002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Kibble, T. W. B. "Phase Transitions and Topological Defects in the Early Universe". Australian Journal of Physics 50, nr 4 (1997): 697. http://dx.doi.org/10.1071/p96076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Our present theories of particle physics and cosmology, taken together, suggest that very early in its history, the universe underwent a series of phase transitions, at which topological defects, similar to those formed in some condensed matter transitions, may have been created. Such defects, in particular cosmic strings, may survive long enough to have important observable effects in the universe today. Predicting these effects requires us to estimate the initial defect density and the way that defects subsequently evolve. Very similar problems arise in condensed matter systems, and recently it has been possible to test some of our ideas about the formation of defects using experiments with liquid helium-3 (in collaboration with the Low Temperature Laboratory in Helsinki). I shall review the present status of this theory.
29

Dakhnovskii, Yu I., A. A. Ovchinnikov i M. B. Semenov. "Low-temperature adiabatic chemical reactions in the condensed phase". Molecular Physics 63, nr 3 (20.02.1988): 497–515. http://dx.doi.org/10.1080/00268978800100341.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bonfanti, Silvia, i Giancarlo Jug. "On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics". Journal of Low Temperature Physics 180, nr 3-4 (19.05.2015): 214–37. http://dx.doi.org/10.1007/s10909-015-1311-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Collin, E., J. Kofler, J. S. Heron, O. Bourgeois, Yu M. Bunkov i H. Godfrin. "Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics". Journal of Low Temperature Physics 158, nr 3-4 (19.09.2009): 678–84. http://dx.doi.org/10.1007/s10909-009-9960-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Skyba, P. "Notes on Measurement Methods of Mechanical Resonators Used in Low Temperature Physics". Journal of Low Temperature Physics 160, nr 5-6 (22.06.2010): 219–39. http://dx.doi.org/10.1007/s10909-010-0189-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Andersson, O., T. Matsuo, H. Suga i P. Ferloni. "Low-temperature heat capacity of urea". International Journal of Thermophysics 14, nr 1 (styczeń 1993): 149–58. http://dx.doi.org/10.1007/bf00522668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

YEH, N. C., i A. D. BEYER. "UNCONVENTIONAL LOW-ENERGY EXCITATIONS OF CUPRATE SUPERCONDUCTORS". International Journal of Modern Physics B 23, nr 22 (10.09.2009): 4543–77. http://dx.doi.org/10.1142/s021797920905403x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Recent development in the physics of high-temperature cuprate superconductivity is reviewed, with special emphasis on the phenomena of unconventional and non-universal low-energy excitations of hole- and electron-type cuprate superconductors and the possible physical origin. A phenomenology based on coexisting competing orders with cuprate superconductivity in the ground state appears to provide a consistent account for a wide range of experimental findings, including the presence (absence) of pseudogaps and Fermi arcs above the superconducting transition Tc in hole-type (electron-type) cuprate superconductors and the novel conductance modulations below Tc, particularly in the vortex state. Moreover, the competing order scenario is compatible with the possibility of pre-formed Cooper pairs and significant phase fluctuations in cuprate superconductors. The physical implications of the unified phenomenology and remaining open issues for the microscopic mechanism of cuprate superconductivity are discussed.
35

Cartwright, Julyan H. E. "Nonlinear dynamics determines the thermodynamic instability of condensed matter in vacuo". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, nr 2174 (8.06.2020): 20190534. http://dx.doi.org/10.1098/rsta.2019.0534.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Condensed matter is thermodynamically unstable in a vacuum. That is what thermodynamics tells us through the relation showing that condensed matter at temperatures above absolute zero always has non-zero vapour pressure. This instability implies that at low temperatures energy must not be distributed equally among atoms in the crystal lattice but must be concentrated. In dynamical systems such concentrations of energy in localized excitations are well known in the form of discrete breathers, solitons and related nonlinear phenomena. It follows that to satisfy thermodynamics such localized excitations must exist in systems of condensed matter at arbitrarily low temperature and as such the nonlinear dynamics of condensed matter is crucial for its thermodynamics. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.
36

Rehn, J., i R. Moessner. "Maxwell electromagnetism as an emergent phenomenon in condensed matter". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, nr 2075 (28.08.2016): 20160093. http://dx.doi.org/10.1098/rsta.2016.0093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
The formulation of a complete theory of classical electromagnetism by Maxwell is one of the milestones of science. The capacity of many-body systems to provide emergent mini-universes with vacua quite distinct from the one we inhabit was only recognized much later. Here, we provide an account of how simple systems of localized spins manage to emulate Maxwell electromagnetism in their low-energy behaviour. They are much less constrained by symmetry considerations than the relativistically invariant electromagnetic vacuum, as their substrate provides a non-relativistic background with even translational invariance broken. They can exhibit rich behaviour not encountered in conventional electromagnetism. This includes the existence of magnetic monopole excitations arising from fractionalization of magnetic dipoles; as well as the capacity of disorder, by generating defects on the lattice scale, to produce novel physics, as exemplified by topological spin glassiness or random Coulomb magnetism. This article is part of the themed issue ‘Unifying physics and technology in light of Maxwell's equations’.
37

UWATOKO, Yoshiya. "Development of High-Pressure Technique for Low Temperature Physics. Magnetic Measurements under High Pressure." Review of High Pressure Science and Technology 11, nr 3 (2001): 181–86. http://dx.doi.org/10.4131/jshpreview.11.181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

MÔRI, Nobuo. "Progress in Cubic-Anvil High Pressure Techniques for Low Temperature Solid State Physics Research". Review of High Pressure Science and Technology 14, nr 4 (2004): 335–45. http://dx.doi.org/10.4131/jshpreview.14.335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Sorokin, L. M., L. P. Efimenko, A. E. Kalmykov i Yu I. Smolin. "Low-Dimensional Systems and Surface Physics". Physics of the Solid State 46, nr 5 (maj 2004): 983–88. http://dx.doi.org/10.1134/1.1744979.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Andersson, Ove, Bertil Sundqvist i Gunnar Bäckström. "A low-temperature high-pressure apparatus with a temperature control system". High Pressure Research 10, nr 4 (sierpień 1992): 599–605. http://dx.doi.org/10.1080/08957959208202842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Ionin, A. A., I. V. Kochetov, A. P. Napartovich i N. N. Yuryshev. "Physics and engineering of singlet delta oxygen production in low-temperature plasma". Journal of Physics D: Applied Physics 40, nr 2 (5.01.2007): R25—R61. http://dx.doi.org/10.1088/0022-3727/40/2/r01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Causa, Federica, Gabriele Gervasini, Andrea Uccello, Gustavo Granucci, Daria Ricci i Natale Rispoli. "Obtaining the unperturbed plasma potential in low-density, low-temperature plasmas". Plasma Sources Science and Technology 30, nr 4 (1.04.2021): 045008. http://dx.doi.org/10.1088/1361-6595/abef1b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kim, S. J., M.-A. Nicolet, R. S. Averback i D. Peak. "Low-temperature ion-beam mixing in metals". Physical Review B 37, nr 1 (1.01.1988): 38–49. http://dx.doi.org/10.1103/physrevb.37.38.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Takahashi, Mitsue, Yuko Hosokoshi, Hiroki Nakano, Tsuneaki Goto, Minoru Takahashi i Minoru Kinoshita. "Low-Temperature Magnetic Properties of Nitronyl Nitroxides". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 306, nr 1 (październik 1997): 111–18. http://dx.doi.org/10.1080/10587259708044556.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Sergeev, Gleb B. "Reactions in Solid Low Temperature Co-condensates". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 313, nr 1 (maj 1998): 155–66. http://dx.doi.org/10.1080/10587259808044269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Dmowski, L. H., J. Przybytek i E. Litwin-Staszewska. "Manganin sensors as low temperature pressure gauges". High Pressure Research 19, nr 1-6 (wrzesień 2000): 353–57. http://dx.doi.org/10.1080/08957950008202577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Horibe, A., S. Fukusako i M. Yamada. "Surface tension of low-temperature aqueous solutions". International Journal of Thermophysics 17, nr 2 (marzec 1996): 483–93. http://dx.doi.org/10.1007/bf01443405.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Takushima, M., i Y. Kajikawa. "Excess As in low-temperature grown InAs". physica status solidi (c) 5, nr 9 (lipiec 2008): 2781–83. http://dx.doi.org/10.1002/pssc.200779157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Winter, J. "Dust in fusion devices—a multi-faceted problem connecting high- and low-temperature plasma physics". Plasma Physics and Controlled Fusion 46, nr 12B (19.11.2004): B583—B592. http://dx.doi.org/10.1088/0741-3335/46/12b/047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Bansal, Kanika, i Shouvik Datta. "Dielectric Response of Light Emitting Semiconductor Junction Diodes: Frequency and Temperature Domain Study". MRS Proceedings 1635 (2014): 49–54. http://dx.doi.org/10.1557/opl.2014.206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
ABSTRACTWe report a change in the dielectric response of AlGaInP based multi quantum well diodes with the onset of modulated light emission. Observed variation in junction capacitance and modulated light emission, with frequency and temperature, suggests participation of slow defect channels in fast radiative recombination dynamics. Our work establishes prominent connection between electrical and optical properties of light emitting diodes and provides a tool to investigate the interesting condensed matter physics of these structures. Our observations demand a generalized physical framework, beyond conventional models, to understand an active light emitting diode under charge carrier injection. We suggest that the low frequency response can compromise the performance of these diodes under high frequency applications. We also suggest how internal quantum well structure can affect modulated light output efficiency of the device.

Do bibliografii