Artykuły w czasopismach na temat „Plasmonic applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Plasmonic applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Pełny tekst źródłaBabicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications." Nanomaterials 13, no. 7 (2023): 1270. http://dx.doi.org/10.3390/nano13071270.
Pełny tekst źródłaSebek, Matej, Ahmed Elbana, Arash Nemati, et al. "Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications." Journal of Molecular and Engineering Materials 08, no. 01n02 (2020): 2030001. http://dx.doi.org/10.1142/s2251237320300016.
Pełny tekst źródłaOgawa, Shinpei, Shoichiro Fukushima, and Masaaki Shimatani. "Graphene Plasmonics in Sensor Applications: A Review." Sensors 20, no. 12 (2020): 3563. http://dx.doi.org/10.3390/s20123563.
Pełny tekst źródłaLiu, Jianxun, Huilin He, Dong Xiao, et al. "Recent Advances of Plasmonic Nanoparticles and their Applications." Materials 11, no. 10 (2018): 1833. http://dx.doi.org/10.3390/ma11101833.
Pełny tekst źródłaBhattarai, Jay K., Md Helal Uddin Maruf, and Keith J. Stine. "Plasmonic-Active Nanostructured Thin Films." Processes 8, no. 1 (2020): 115. http://dx.doi.org/10.3390/pr8010115.
Pełny tekst źródłaZhang, Xiaoyu, Chanda Ranjit Yonzon, and Richard P. Van Duyne. "Nanosphere lithography fabricated plasmonic materials and their applications." Journal of Materials Research 21, no. 5 (2006): 1083–92. http://dx.doi.org/10.1557/jmr.2006.0136.
Pełny tekst źródłaMarinica, Dana Codruta, Mario Zapata, Peter Nordlander, et al. "Active quantum plasmonics." Science Advances 1, no. 11 (2015): e1501095. http://dx.doi.org/10.1126/sciadv.1501095.
Pełny tekst źródłaOdom, Teri W. "Materials Screening and Applications of Plasmonic Crystals." MRS Bulletin 35, no. 1 (2010): 66–73. http://dx.doi.org/10.1557/mrs2010.618.
Pełny tekst źródłaMauriz, Elba. "Clinical Applications of Visual Plasmonic Colorimetric Sensing." Sensors 20, no. 21 (2020): 6214. http://dx.doi.org/10.3390/s20216214.
Pełny tekst źródłaJiang, Jing, Xinhao Wang, Shuang Li, et al. "Plasmonic nano-arrays for ultrasensitive bio-sensing." Nanophotonics 7, no. 9 (2018): 1517–31. http://dx.doi.org/10.1515/nanoph-2018-0023.
Pełny tekst źródłaGenç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.
Pełny tekst źródłaIndhu, A. R., L. Keerthana, and Gnanaprakash Dharmalingam. "Plasmonic nanotechnology for photothermal applications – an evaluation." Beilstein Journal of Nanotechnology 14 (March 27, 2023): 380–419. http://dx.doi.org/10.3762/bjnano.14.33.
Pełny tekst źródłaLi, Shaobo, Shuming Yang, Fei Wang, Qiang Liu, Biyao Cheng, and Yossi Rosenwaks. "Plasmonic interference modulation for broadband nanofocusing." Nanophotonics 10, no. 16 (2021): 4113–23. http://dx.doi.org/10.1515/nanoph-2021-0405.
Pełny tekst źródłaYou, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.
Pełny tekst źródłaUrban, Maximilian J., Chenqi Shen, Xiang-Tian Kong, et al. "Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches." Annual Review of Physical Chemistry 70, no. 1 (2019): 275–99. http://dx.doi.org/10.1146/annurev-physchem-050317-021332.
Pełny tekst źródłaKhan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, and Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials." Symmetry 12, no. 8 (2020): 1365. http://dx.doi.org/10.3390/sym12081365.
Pełny tekst źródłaBrooks, James L., Christopher L. Warkentin, Dayeeta Saha, Emily L. Keller, and Renee R. Frontiera. "Toward a mechanistic understanding of plasmon-mediated photocatalysis." Nanophotonics 7, no. 11 (2018): 1697–724. http://dx.doi.org/10.1515/nanoph-2018-0073.
Pełny tekst źródłaLamri, Gwénaëlle, Alessandro Veltri, Jean Aubard, Pierre-Michel Adam, Nordin Felidj, and Anne-Laure Baudrion. "Polarization-dependent strong coupling between silver nanorods and photochromic molecules." Beilstein Journal of Nanotechnology 9 (October 8, 2018): 2657–64. http://dx.doi.org/10.3762/bjnano.9.247.
Pełny tekst źródłaTao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Pełny tekst źródłaDemishkevich, Elizaveta, Andrey Zyubin, Alexey Seteikin, et al. "Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver." Materials 16, no. 9 (2023): 3342. http://dx.doi.org/10.3390/ma16093342.
Pełny tekst źródłaLi, Yuyu, Khwanchai Tantiwanichapan, Anna K. Swan, and Roberto Paiella. "Graphene plasmonic devices for terahertz optoelectronics." Nanophotonics 9, no. 7 (2020): 1901–20. http://dx.doi.org/10.1515/nanoph-2020-0211.
Pełny tekst źródłaBarbillon, Grégory, Andrey Ivanov, and Andrey K. Sarychev. "Applications of Symmetry Breaking in Plasmonics." Symmetry 12, no. 6 (2020): 896. http://dx.doi.org/10.3390/sym12060896.
Pełny tekst źródłaKessentini, Sameh, Dominique Barchiesi, Thomas Grosges, Laurence Giraud-Moreau, and Marc Lamy de la Chapelle. "Adaptive Non-Uniform Particle Swarm Application to Plasmonic Design." International Journal of Applied Metaheuristic Computing 2, no. 1 (2011): 18–28. http://dx.doi.org/10.4018/jamc.2011010102.
Pełny tekst źródłaQi, Miao, Nancy Meng Ying Zhang, Kaiwei Li, Swee Chuan Tjin, and Lei Wei. "Hybrid Plasmonic Fiber-Optic Sensors." Sensors 20, no. 11 (2020): 3266. http://dx.doi.org/10.3390/s20113266.
Pełny tekst źródłaTohari, Mariam M., Andreas Lyras, and Mohamad S. AlSalhi. "A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser." Nanomaterials 10, no. 3 (2020): 416. http://dx.doi.org/10.3390/nano10030416.
Pełny tekst źródłaCheng, Chang-Wei, Soniya S. Raja, Ching-Wen Chang, et al. "Epitaxial aluminum plasmonics covering full visible spectrum." Nanophotonics 10, no. 1 (2020): 627–37. http://dx.doi.org/10.1515/nanoph-2020-0402.
Pełny tekst źródłaDavis, Timothy J., Daniel E. Gómez, and Ann Roberts. "Plasmonic circuits for manipulating optical information." Nanophotonics 6, no. 3 (2016): 543–59. http://dx.doi.org/10.1515/nanoph-2016-0131.
Pełny tekst źródłaManuel, Ajay, and Karthik Shankar. "Hot Electrons in TiO2–Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis." Nanomaterials 11, no. 5 (2021): 1249. http://dx.doi.org/10.3390/nano11051249.
Pełny tekst źródłaKuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.
Pełny tekst źródłaSong, Hyerin, Heesang Ahn, Taeyeon Kim, Jong-ryul Choi, and Kyujung Kim. "Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting." Applied Sciences 11, no. 19 (2021): 9133. http://dx.doi.org/10.3390/app11199133.
Pełny tekst źródłaSpektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.
Pełny tekst źródłaChen, Kai, Eunice Sok Ping Leong, Michael Rukavina, Tadaaki Nagao, Yan Jun Liu, and Yuebing Zheng. "Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions." Nanophotonics 4, no. 1 (2015): 186–97. http://dx.doi.org/10.1515/nanoph-2015-0007.
Pełny tekst źródłaHe, Zhicong, Fang Li, Yahui Liu, et al. "Principle and Applications of the Coupling of Surface Plasmons and Excitons." Applied Sciences 10, no. 5 (2020): 1774. http://dx.doi.org/10.3390/app10051774.
Pełny tekst źródłaDuan, Qilin, Yineng Liu, Shanshan Chang, Huanyang Chen, and Jin-hui Chen. "Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications." Sensors 21, no. 16 (2021): 5262. http://dx.doi.org/10.3390/s21165262.
Pełny tekst źródłaEndo-Kimura, Maya, and Ewa Kowalska. "Plasmonic Photocatalysts for Microbiological Applications." Catalysts 10, no. 8 (2020): 824. http://dx.doi.org/10.3390/catal10080824.
Pełny tekst źródłaKasani, Sujan, Kathrine Curtin, and Nianqiang Wu. "A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications." Nanophotonics 8, no. 12 (2019): 2065–89. http://dx.doi.org/10.1515/nanoph-2019-0158.
Pełny tekst źródłaLiu, Yanting, and Xuming Zhang. "Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays." Micromachines 12, no. 7 (2021): 826. http://dx.doi.org/10.3390/mi12070826.
Pełny tekst źródłaDeka, Gitanjal, Chi-Kuang Sun, Katsumasa Fujita, and Shi-Wei Chu. "Nonlinear plasmonic imaging techniques and their biological applications." Nanophotonics 6, no. 1 (2017): 31–49. http://dx.doi.org/10.1515/nanoph-2015-0149.
Pełny tekst źródłaYan, Siqi, Xiaolong Zhu, Jianji Dong, Yunhong Ding, and Sanshui Xiao. "2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications." Nanophotonics 9, no. 7 (2020): 1877–900. http://dx.doi.org/10.1515/nanoph-2020-0074.
Pełny tekst źródłaZhou, Renlong, Kaleem Ullah, Sa Yang, et al. "Recent advances in graphene and black phosphorus nonlinear plasmonics." Nanophotonics 9, no. 7 (2020): 1695–715. http://dx.doi.org/10.1515/nanoph-2020-0004.
Pełny tekst źródłaRen, Yi, Jingjing Zhang, Xinxin Gao, Xin Zheng, Xinyu Liu, and Tie Jun Cui. "Active spoof plasmonics: from design to applications." Journal of Physics: Condensed Matter 34, no. 5 (2021): 053002. http://dx.doi.org/10.1088/1361-648x/ac31f7.
Pełny tekst źródłaHumbert, Christophe, Thomas Noblet, Laetitia Dalstein, Bertrand Busson, and Grégory Barbillon. "Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review." Materials 12, no. 5 (2019): 836. http://dx.doi.org/10.3390/ma12050836.
Pełny tekst źródłaWei, Hong, and Hongxing Xu. "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits." Nanophotonics 1, no. 2 (2012): 155–69. http://dx.doi.org/10.1515/nanoph-2012-0012.
Pełny tekst źródłaAhn, Heesang, Soojung Kim, Sung Suk Oh, et al. "Plasmonic Nanopillars—A Brief Investigation of Fabrication Techniques and Biological Applications." Biosensors 13, no. 5 (2023): 534. http://dx.doi.org/10.3390/bios13050534.
Pełny tekst źródłaKaraballi, Reem A., Yashar Esfahani Monfared, Isobel C. Bicket, Robert H. Coridan, and Mita Dasog. "Solid-state synthesis of UV-plasmonic Cr2N nanoparticles." Journal of Chemical Physics 157, no. 15 (2022): 154706. http://dx.doi.org/10.1063/5.0109806.
Pełny tekst źródłaVlček, Jaroslav, Jaromír Pištora, and Michal Lesňák. "Design of Plasmonic-Waveguiding Structures for Sensor Applications." Nanomaterials 9, no. 9 (2019): 1227. http://dx.doi.org/10.3390/nano9091227.
Pełny tekst źródłaZhao, Xiaoyu, Jiahong Wen, Aonan Zhu, et al. "Manipulation and Applications of Hotspots in Nanostructured Surfaces and Thin Films." Nanomaterials 10, no. 9 (2020): 1667. http://dx.doi.org/10.3390/nano10091667.
Pełny tekst źródłaLin, Keng-Te, Han Lin, and Baohua Jia. "Plasmonic nanostructures in photodetection, energy conversion and beyond." Nanophotonics 9, no. 10 (2020): 3135–63. http://dx.doi.org/10.1515/nanoph-2020-0104.
Pełny tekst źródłaButt, Muhammad Ali ALI, and Nikolay Kazanskiy. "Enhancing the sensitivity of a standard plasmonic MIM square ring resonator by incorporating the Nano-dots in the cavity." Photonics Letters of Poland 12, no. 1 (2020): 1. http://dx.doi.org/10.4302/plp.v12i1.902.
Pełny tekst źródła