Gotowa bibliografia na temat „Plasmonic sensing and catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasmonic sensing and catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasmonic sensing and catalysis"
Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.
Pełny tekst źródłaNugroho, Ferry Anggoro Ardy. "Fabrication and Characterization of Supported Porous Au Nanoparticles." Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika 9, no. 1 (2024): 1–12. https://doi.org/10.36312/e-saintika.v9i1.2427.
Pełny tekst źródłaDong, Jun, Zhenglong Zhang, Hairong Zheng, and Mentao Sun. "Recent Progress on Plasmon-Enhanced Fluorescence." Nanophotonics 4, no. 4 (2015): 472–90. http://dx.doi.org/10.1515/nanoph-2015-0028.
Pełny tekst źródłaKhairullina, Evgeniia, Kseniia Mosina, Rachelle M. Choueiri, et al. "An aligned octahedral core in a nanocage: synthesis, plasmonic, and catalytic properties." Nanoscale 11, no. 7 (2019): 3138–44. http://dx.doi.org/10.1039/c8nr09731c.
Pełny tekst źródłaChen, Linmin, Meihuang Zeng, Jingwen Jin, et al. "Nanoenzyme Reactor-Based Oxidation-Induced Reaction for Quantitative SERS Analysis of Food Antiseptics." Biosensors 12, no. 11 (2022): 988. http://dx.doi.org/10.3390/bios12110988.
Pełny tekst źródłaZhang, Xinxin, Hongyue Huo, Kongshuo Ma, and Zhenlu Zhao. "Reduced graphene oxide-supported smart plasmonic AgPtPd porous nanoparticles for high-performance electrochemical detection of 2,4,6-trinitrotoluene." New Journal of Chemistry 46, no. 15 (2022): 7161–67. http://dx.doi.org/10.1039/d2nj00434h.
Pełny tekst źródłaAyivi, Raphael D., Bukola O. Adesanmi, Eric S. McLamore, Jianjun Wei, and Sherine O. Obare. "Molecularly Imprinted Plasmonic Sensors as Nano-Transducers: An Effective Approach for Environmental Monitoring Applications." Chemosensors 11, no. 3 (2023): 203. http://dx.doi.org/10.3390/chemosensors11030203.
Pełny tekst źródłaLarsson, Elin M., Svetlana Syrenova, and Christoph Langhammer. "Nanoplasmonic sensing for nanomaterials science." Nanophotonics 1, no. 3-4 (2012): 249–66. http://dx.doi.org/10.1515/nanoph-2012-0029.
Pełny tekst źródłaQuazi, Mohzibudin Z., Taeyoung Kim, Jinhwan Yang, and Nokyoung Park. "Tuning Plasmonic Properties of Gold Nanoparticles by Employing Nanoscale DNA Hydrogel Scaffolds." Biosensors 13, no. 1 (2022): 20. http://dx.doi.org/10.3390/bios13010020.
Pełny tekst źródłaMatsuura, Ryo, Keiko Tawa, Yukiya Kitayama, and Toshifumi Takeuchi. "A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein." Chemical Communications 52, no. 20 (2016): 3883–86. http://dx.doi.org/10.1039/c5cc07868g.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasmonic sensing and catalysis"
Navas, M. P. "Pulsed laser ablation of composite metal nanoparticles: studies on growth, plasmonic sensing and catalysis." Thesis, IIT Delhi, 2017. http://localhost:8080/iit/handle/2074/7229.
Pełny tekst źródłaSil, Devika. "SYNTHESIS AND APPLICATIONS OF PLASMONIC NANOSTRUCTURES." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/364016.
Pełny tekst źródłaBordley, Justin Andrew. "Cubic architectures on the nanoscale: The plasmonic properties of silver or gold dimers and the catalytic properties of platinum-silver alloys." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55025.
Pełny tekst źródłaNelson, Darby. "Nonlinear Processes in Plasmonic Catalysis." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1560853180547478.
Pełny tekst źródłaRuffato, Gianluca. "Plasmonic Gratings for Sensing Devices." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422071.
Pełny tekst źródłaReilly, Thomas H. III. "Plasmonic materials for optical sensing and spectroscopy." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239396.
Pełny tekst źródłaPerino, Mauro. "Characterization of plasmonic surfaces for sensing applications." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424012.
Pełny tekst źródłaFan, Yinan. "Rational synthesis of plasmonic/catalytic bimetallic nanocrystals for catalysis." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS189.pdf.
Pełny tekst źródłaSun, Xu. "Hybrid Plasmonic Devices for Optical Communication and Sensing." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205974.
Pełny tekst źródłaAhmadivand, Arash. "Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3576.
Pełny tekst źródłaKsiążki na temat "Plasmonic sensing and catalysis"
Zhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. Wiley & Sons, Limited, John, 2018.
Znajdź pełny tekst źródłaZhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications. Wiley & Sons, Limited, John, 2018.
Znajdź pełny tekst źródłaZhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. Wiley & Sons, Incorporated, John, 2018.
Znajdź pełny tekst źródłaZhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. Wiley & Sons, Incorporated, John, 2018.
Znajdź pełny tekst źródłaPlasmonic Nanoelectronics and Sensing. Cambridge University Press, 2014.
Znajdź pełny tekst źródłaLi, Er-Ping, and Hong-Son Chu. Plasmonic Nanoelectronics and Sensing. Cambridge University Press, 2014.
Znajdź pełny tekst źródłaLi, Er-Ping, and Hong-Son Chu. Plasmonic Nanoelectronics and Sensing. Cambridge University Press, 2014.
Znajdź pełny tekst źródłaCortés, Emiliano, and Pedro H. C. Camargo. Plasmonic Catalysis: From Fundamentals to Applications. Wiley & Sons, Limited, John, 2021.
Znajdź pełny tekst źródłaCortés, Emiliano, and Pedro H. C. Camargo. Plasmonic Catalysis: From Fundamentals to Applications. Wiley & Sons, Limited, John, 2021.
Znajdź pełny tekst źródłaCortés, Emiliano, and Pedro H. C. Camargo. Plasmonic Catalysis: From Fundamentals to Applications. Wiley & Sons, Incorporated, John, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Plasmonic sensing and catalysis"
Ramakrishnan, Sundaram Bhardwaj, Ravi Teja A. Tirumala, Farshid Mohammadparast, et al. "Plasmonic photocatalysis." In Catalysis. Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163128-00038.
Pełny tekst źródłaGimeno, Léa, Somayeh Talebzadeh, Scott Trammell, Clémence Queffélec, and D. Andrew Knight. "Plasmon-Mediated Homogeneous Catalysis." In Plasmonic Nanomaterials. Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003474067-4.
Pełny tekst źródłaButt, Muhammad Ali, Svetlana Nikolaevna Khonina, and Nikolay Lvovich Kazanskiy. "Plasmonic Sensing Devices." In Plasmonics-Based Optical Sensors and Detectors. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003438304-4.
Pełny tekst źródłaZhang, Zhenglong. "Plasmon-Driven Catalysis of Molecular Reactions." In Plasmonic Photocatalysis. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_7.
Pełny tekst źródłaZhang, Zhenglong. "Plasmon-Driven Catalysis of Nanomaterials Growth." In Plasmonic Photocatalysis. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_9.
Pełny tekst źródłaTa, Van Duong, and Hanh Hong Mai. "Plasmonic Nanolasers." In Photonics Elements for Sensing and Optical Conversions. CRC Press, 2023. http://dx.doi.org/10.1201/9781003439165-4.
Pełny tekst źródłaHu, Dora Juan Juan, and Aaron Ho-Pui Ho. "Plasmonic Photonic Crystal Fibers." In Advanced Fiber Sensing Technologies. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5507-7_1.
Pełny tekst źródłaPicardi, Gennaro, Mathieu Edely, and Marc Lamy de la Chapelle. "SERS and TERS and Their Applications in Organic Synthesis or Catalysis." In Plasmonic Nanomaterials. Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003474067-5.
Pełny tekst źródłaTittl, Andreas, Harald Giessen, and Na Liu. "Plasmonic Gas and Chemical Sensing." In Nanomaterials and Nanoarchitectures. Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9921-8_8.
Pełny tekst źródłaMartinsson, Erik, and Daniel Aili. "Refractometric Sensing Using Plasmonic Nanoparticles." In Encyclopedia of Nanotechnology. Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100984-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasmonic sensing and catalysis"
Pastoriza-Santos, Isabel. "Plasmonic Platforms for SERS Sensing." In Applied Industrial Spectroscopy. Optica Publishing Group, 2024. https://doi.org/10.1364/ais.2024.atu1a.2.
Pełny tekst źródłaLoo, Jacky, Roman Calpe, Xuan-Hung Pham, et al. "Colorimetric Sensing with Reconfigurable Chiral Plasmonic Metamolecules." In Optical Sensors. Optica Publishing Group, 2024. https://doi.org/10.1364/sensors.2024.sm1h.5.
Pełny tekst źródłaVillatoro, E., M. Loyez, J. Villatoro, C. Caucheteur, and J. Albert. "Dual mode-comb plasmonic optical fiber sensing." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/bgpp.2024.bth1a.2.
Pełny tekst źródłaSayed, Mostafa, Ahmed Faramawy, and Mohamed A. Swillam. "Highly sensitive plasmonic grating sensor with zinc oxide layer." In Optical Sensing and Precision Metrology, edited by Jacob Scheuer. SPIE, 2025. https://doi.org/10.1117/12.3043678.
Pełny tekst źródłaAlsayed, Ahmad E., Abdelrahman Ghanim, Ashraf Yahia, and Mohamed A. Swillam. "Design of ultrasensitive plasmonic multilayer structure in gas-sensing applications." In Optical Sensing and Precision Metrology, edited by Jacob Scheuer. SPIE, 2025. https://doi.org/10.1117/12.3051887.
Pełny tekst źródłaAlanazi, Ahmed, and James H. Rice. "P3HT: PCBm organic polymer supported plasmonic photo-catalysis and sensing." In Organic Electronics and Photonics: Fundamentals and Devices III, edited by Sebastian Reineke, Koen Vandewal, and Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2632153.
Pełny tekst źródłaKim, Dong Ha, Huan Wang, Kyungwha Chung, et al. "Plasmon-enhanced multi-functions: from sensing, catalysis, optoelectronics to electrics (Conference Presentation)." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2018. http://dx.doi.org/10.1117/12.2319392.
Pełny tekst źródłaQiu, Suyan, Fusheng Zhao, Jingting Li, and Wei-Chuan Shih. "Multimodal signal amplification by collaborative plasmonic intensification and catalytic multiplication (c-PI/CM)." In Label-free Biomedical Imaging and Sensing (LBIS) 2019, edited by Natan T. Shaked and Oliver Hayden. SPIE, 2019. http://dx.doi.org/10.1117/12.2509399.
Pełny tekst źródłaPaital, Diptiranjan, Saumyakanti Khatua, and Anatoly Zayats. "Development of Plasmonic Metal-Semiconductor Nanoarchitectures for Enhanced Light-Driven Catalysis." In Materials for Sustainable Development Conference (MATSUS Fall 24). FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2024. https://doi.org/10.29363/nanoge.matsusfall.2024.189.
Pełny tekst źródła"Section 7: Materials for sensing and catalysis." In 2014 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE). IEEE, 2014. http://dx.doi.org/10.1109/omee.2014.6912418.
Pełny tekst źródłaRaporty organizacyjne na temat "Plasmonic sensing and catalysis"
Alivisatos, A. P., Gabor A. Somorjai, and Peidong Yang. Plasmonic-Enhanced Catalysis. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada576759.
Pełny tekst źródłaRadu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/837277.
Pełny tekst źródłaCabrini, Stefano. Lab-on-Chip device with sub-10 nm nanochannels and plasmonic resonators for single molecule sensing applications. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1431230.
Pełny tekst źródła