Gotowa bibliografia na temat „Plum pox virus (PPV)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plum pox virus (PPV)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plum pox virus (PPV)"
Polák, J., J. Kumar, B. Krška i M. Ravelonandro. "Biotech/GM crops in horticulture: plum cv. HoneySweet resistant to Plum pox virus". Plant Protection Science 48, Special Issue (12.12.2012): S43—S48. http://dx.doi.org/10.17221/37/2012-pps.
Pełny tekst źródłaPolák, J. "Distribution of Plum pox virus in the Czech Republic ". Plant Protection Science 38, No. 3 (6.02.2012): 98–101. http://dx.doi.org/10.17221/4859-pps.
Pełny tekst źródłaMihaljfi, Teodora, Renata Iličić, Goran Barać, Zagorka Savić i Ferenc Bagi. "Importance and symptomatology of plum pox virus". Biljni lekar 49, nr 5 (2021): 602–12. http://dx.doi.org/10.5937/biljlek2105602m.
Pełny tekst źródłaPolák, J., i J. Pívalová. "Sporadic distribution of Plum pox virus M strain in natural sources in the Czech Republic". Horticultural Science 32, No. 3 (23.11.2011): 85–88. http://dx.doi.org/10.17221/3770-hortsci.
Pełny tekst źródłaPolák, J. "Viruses of blackthorn and road-bordering trees of plum, myrobalan, sweet and sour cherries in the Czech Republic". Plant Protection Science 43, No. 1 (7.01.2008): 1–4. http://dx.doi.org/10.17221/2351-pps.
Pełny tekst źródłaHauptmanová, A., i J. Polák. "The elimination of Plum pox virus in plum cv. Bluefree and apricot cv. Hanita by chemotherapy of in vitro cultures". Horticultural Science 38, No. 2 (3.05.2011): 49–53. http://dx.doi.org/10.17221/10/2010-hortsci.
Pełny tekst źródłaPolák, J., M. Ravelonandro, J. Kumar-Kundu, J. Pívalová i R. Scorza. "Interactions of Plum pox virus strain Rec with Apple chlorotic leafspot virus and Prune dwarf viruses in field-grown transgenic plum Prunus domestica L., clone C5". Plant Protection Science 44, No. 1 (10.04.2008): 1–5. http://dx.doi.org/10.17221/535-pps.
Pełny tekst źródłaJevremovic, Darko, i Svetlana Paunovic. "Plum pox virus strains: Diversity and geographical distribution in Serbia". Pesticidi i fitomedicina 29, nr 2 (2014): 97–107. http://dx.doi.org/10.2298/pif1402097j.
Pełny tekst źródłaRavelonandro, Michel, Pascal Briard, Ralph Scorza, Ann Callahan, Ioan Zagrai, Jiban K. Kundu i Chris Dardick. "Robust Response to Plum pox virus Infection via Plant Biotechnology". Genes 12, nr 6 (27.05.2021): 816. http://dx.doi.org/10.3390/genes12060816.
Pełny tekst źródłaKrška, B., J. Salava, J. Polák i P. Komínek. "Genetics of resistance to Plum pox virus in apricot". Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (1.01.2002): 180–82. http://dx.doi.org/10.17221/10350-pps.
Pełny tekst źródłaRozprawy doktorskie na temat "Plum pox virus (PPV)"
FERRI, BODIN MANUELLE. "Etudes in vitro et in vivo des interactions prunus - plum pox virus (ppv)". Montpellier, ENSA, 2000. http://www.theses.fr/2000ENSA0025.
Pełny tekst źródłaMüller, Imke. "Zum Resistenzverhalten von Prunus domestica L. und P. armeniaca L. gegenüber dem Plum Pox virus (PPV, Potyvirus)". Berlin Köster, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2759143&prov=M&dok_var=1&dok_ext=htm.
Pełny tekst źródłaPoque, Sylvain. "Identification de nouveaux mécanismes de résistance au Plum Pox Virus chez Arabidopsis thaliana". Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21998/document.
Pełny tekst źródłaThe Plum Pox Virus (PPV) infects Prunus species (stone fruit) and is the causal agent of the Sharka disease. This disease is vastly devastating for fruit and plant productivity and quality. Its cost reaches 10 billions of euros over the last 30 years. Breeding programs have been carried out with the aim to implement resistant cultivars but the number of sources of resistance in Prunus species is rather limited. It has been shown in the laboratory that this virus is able to infect Arabidopsis thaliana with a wide range of response to infection. Indeed, we observed that accessions St-0 and JEA had a resistant behavior, while accession Cvi-1 was partially resistant. Two inoculation methods were compared: mechanical inoculation from Nicotiana benthamiana leaves inoculated with pICPPVnkGFP and agro-inoculation infection from an Agrobacterium strain containing the viral isolate tumesfasciens pBINPPVnkGFP. The use of these two methods of inoculation allows us to highlight variability in the response to PPV depending on the method used. This study aims to identify the factor (s) of the host (s) involved in viral infection. Agro-infection of recombinant populations (F2 and RIL), multi-parental lines and the use of genetic association demonstrate in St-0 and several distinct accessions (seven) a major locus on linkage group 3, called sha3. It appears essential in the long-distance movement of PPV. Use of association genetics helped initiate the fine mapping of sha3 and significantly reduce the number of candidate genes. Screening of mutants was initiated to determine the gene controlling the phenotype Sha3. After mechanical inoculation, the analysis of a recombinant population revealed the presence of a major locus positioned in the middle of the long arm of linkage group 1. This locus co-localizes with rpv1, previously identified in Cvi x Ler offspring (Sicard, Loudet et al. 2008). The same locus was also confirmed with a multi-parental population and by a genetic association approach. A candidate gene is currently being validated in the laboratory. The study of the resistance mechanism carried by the accession JEA was initiated. In this case, it appears that the spread of the virus is inhibited in basal leaves but not in floral stem. The resistance / susceptibility to PPV in JEA appear to be strongly influenced by the physiological stages of the host plant. Further work will be necessary to describe more precisely this resistance mechanism very special. At the end of this thesis, we expect that the identification of these new resistance genes in Arabidopsis allows, after transfer, to increase the diversity of sources of resistance to plum pox virus in fruit trees
Müller, Imke. "Zum Resistenzverhalten von Prunus domestica L. und P. armeniaca L. gegenüber dem Plum pox virus (PPV, Potyvirus) /". Berlin : Köster, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2759143&prov=M&dok_var=1&dok_ext=htm.
Pełny tekst źródłaVarrelmann, Mark. "Begrenzung von heterologer Enkapsidierung und Rekombination bei pathogen-vermittelter Resistenz gegen das Plum pox virus der Pflaume (PPV)". [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958530033.
Pełny tekst źródłaEspinoza, Christian. "Approche métabolomique non-ciblée pour révéler les réponses métaboliques des prunus à l'infection par le PPV, conduisant au développement d'un outil de détection innovant pour la détection précoce de la maladie de la sharka et la sauvegarde des vergers en Occitanie". Thesis, Perpignan, 2022. http://www.theses.fr/2022PERP0018.
Pełny tekst źródłaSharka disease, caused by Plum pox virus (PPV), is responsible for significant economic losses in Prunus. However, no preventive or curative treatments are currently available and only a few sources of natural resistance have been found. In France, a prophylactic approach has been adopted in an attempt to limit the spread of the PPV, which is essentially based on the rapid detection and removal of infected trees. However, certain technical and economic limitations do not allow the early andeffective detection of PPV on a large scale by conventional methods. The department of Pyrénées Orientales (France) is the most affected by this disease (85% of infections). These issues motivated the creation of the Antishark project, which is the result of a collaboration between AkiNaO, the University of Perpignan Via Domitia, FDGDON66 and local producers. The objective of the project was to develop an innovative method of early detection, targeting the metabolic responses of Prunuspersica at an early stage of the infection. Consequently, two studies under monitored conditions using an untargeted metabolomics approach (UHPLC-HRMS) were carried out. This approach is a promising tool to reveal the metabolic interactions between PPV and its host. In a first study, the global metabolic response to PPV-infection (Dideron and Marcus strains), including symptomatic and asymptomatic leaves, allowed the discrimination of metabolic profiles from PPV-infected and healthy leaves. Although there was a common response between the two strains, metabolic differences were also revealed, notably highlighting strain-specific metabolic alterations. In fact, this novel result could eventually lead to the possibility of identifying the viral strain(s) responsible for the infection. Furthermore, it was possible to discriminate PPV-infected plants (symptomatic and asymptomatic leaves) from healthy plants and from plants infected by another plant pathogenic virus. These observations suggest the existence of a potential specific response to the sharka disease. Based on all these findings, the hypothesis that asymptomatic PPVinfected trees could be detected through virus-induced metabolic alterations is supported.Furthermore, the metabolic responses collected from asymptomatic leaves could be considered as early responses to PPV-infection, i.e., before the appearance of symptoms. In a second step, early metabolic alterations, before the appearance of sharka symptoms, were confirmed by a kinetic study, despite negative molecular tests (RT-qPCR). Our results indicate that early detection of PPVinfected plants by targeting metabolic responses in Prunus persica was a promising strategy. Finally,statistical correlations between the two studies were found. Although the cultivars showed significantly different metabolic profiles, some discriminant features were common between the different cultivars tested (GF-305, yellow nectarine, yellow peach) and also between the different stages of the virus infection (symptomatic and asymptomatic). Nevertheless, a co-infection of PPV and powdery mildew observed during the kinetic experiment under monitored conditions could alter the impact of PPV-infection. Consequently, a new kinetic study without co-infection, is ongoing to confirm or refute these first observations. In addition, the identification of biomarkers related to the sharka disease, also in progress, would provide a betterunderstanding of the metabolic interactions between peach and PPV. Finally, other experiments under natural conditions are underway to evaluate the robustness of our potential biomarkers
Hust, Michael. "Rekombinante Antikörper gegen die NIa-Protease des Plum pox virus". [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966096886.
Pełny tekst źródłaЮсько, Л. С. "Епідеміологія вірусу шарки сливи (plum pox virus) в Закарпатському регіоні". Rozprawa doktorska kandydata nauk biologicznych, КНУТШ, 2009.
Znajdź pełny tekst źródłaMarandel, Grégoire. "Organisation génomique de la résistance quantitative au Plum pox virus chez les Prunus". Bordeaux 2, 2008. http://www.theses.fr/2008BOR21562.
Pełny tekst źródłaThe Plum pox virus (PPV), the causal agent of the sharka disease, is the most detrimental virus on stone-fruit trees, worldwide. Infected fruits are not marketable. To date, no peach cultivar is resistant. However sources of resistance have been identified and mapped in apricot and Prunus davidiana, a wild peach-related species. Several of the mapped QTL co-localize with candidate genes previously identified. Among them are the translation initiation factors. In this study, resistance in P. Davidiana was confirmed in an F2 population and two new QTL were identified. Quantitative analysis of the apricot cultivar 'Harlayne' resistance was also performed. A candidate gene strategy followed, including translation initiation factors elF4E, elF4G and their isoforms. Molecular markers targeting these genes were developped as a tool for marker-assisted selection. It revealed a striking co-localization with several resistance QTL identified in P. Davidiana and P. Armeniaca cv. 'Harlayne'. The implication od these genes in PPV resistance is discussed. In order to validate the consistency of these results with those previously published, data were merged in a QTL meta-analysis. It enabled to refine the boundaries of the genomic region controlling PPV resistance in both species, P. Davidiana and P. Armeniaca
Neumüller, Michael. "Die Hypersensibilität der Europäischen Pflaume (Prunus domestica L.) gegenüber dem Scharkavirus (Plum pox virus)". [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB12103718.
Pełny tekst źródłaKsiążki na temat "Plum pox virus (PPV)"
Chang, L. W. H. Pests not known to occur in the United States or of limited distribution. 88. Plum pox virus. 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Plum pox virus (PPV)"
Maiss, Edgar, Mark Varrelmann, Chris DiFonzo i Benjamin Raccah. "Risk Assessment of Transgenic Plants Expressing the Coat Protein Gene of Plum Pox Potyvirus (PPV)". W Virus-Resistant Transgenic Plants: Potential Ecological Impact, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03506-1_10.
Pełny tekst źródłaKölber, M., M. Németh, L. Krizbai, E. Kiss-Tóth i M. Kálmán. "Detection of Plum Pox Virus by Different Methods". W Developments in Plant Pathology, 317–19. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_67.
Pełny tekst źródłaScorza, Ralph, Ann Callahan, Michel Ravelonandro i Michael Braverman. "Development and Regulation of the Plum Pox Virus Resistant Transgenic Plum ‘HoneySweet’". W Regulation of Agricultural Biotechnology: The United States and Canada, 269–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2156-2_12.
Pełny tekst źródłaTian, Lining, Shuocheng Zhang, H. J. I. P. ne SanfaHon, Antonet Svircev, Daniel C. Brown i Rui Wen. "PPV-Specific Hairpin RNAs is an Effective Method for Plum Pox Potyvirus Resistance". W Biotechnology and Sustainable Agriculture 2006 and Beyond, 103–6. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6635-1_10.
Pełny tekst źródłaMiletić, Nemanja, Darko Jevremović, Olga Mitrović, Olivera Gvozdenović, Marko Pajić i Svetlana Paunović. "Influence of Different Plum Pox Virus Strains on Chemical Composition of ‘Čačanska Lepotica’ Plum Fruit Cultivar". W 30th Scientific-Experts Conference of Agriculture and Food Industry, 76–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40049-1_9.
Pełny tekst źródłada Câmara Machado, Artur, Hermann Katinger i Margit Laimer da Câmara Machado. "Coat protein-mediated protection against plum pox virus in herbaceous model plants and transformation of apricot and plum". W Developments in Plant Breeding, 349–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0467-8_70.
Pełny tekst źródłaRubio, Manuel, Federico Dicenta i Pedro Martínez-Gómez. "Genomic Designing of New Almond-Peach Rootstock-Variety Combinations Resistant to Plum Pox Virus (Sharka)". W Genomic Designing for Biotic Stress Resistant Fruit Crops, 275–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91802-6_6.
Pełny tekst źródłaPolák, J. "The Role of Prunus Spinosa L. in Epidemiology of Plum Pox Virus in the Czech Republic". W Developments in Plant Pathology, 527–30. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_117.
Pełny tekst źródłaNicolás-Almansa, María, D. Ruiz, A. Guevara, J. Cos, Pedro Martínez-Gómez i Manuel Rubio. "Genomic Designing of New Plum Pox Virus Resistant Plumcot [Prunus Salicina Lindl. x Prunus Armeniaca L.] Varieties Through Interspecific Hybridization". W Genomic Designing for Biotic Stress Resistant Fruit Crops, 287–304. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91802-6_7.
Pełny tekst źródłaButac, Madalina. "Plum Breeding". W Prunus. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92432.
Pełny tekst źródłaStreszczenia konferencji na temat "Plum pox virus (PPV)"
Shehu, Dhurata, Harallamb Paçe, Dritan Sadikaj i Ragip Elezaj. "DIAGNOSIS AND CONTROL OF PLUM POX VIRUS (PPV) ON PLUM AT THE DISTRICT OF TROPOJË, ALBANIA". W The 4th International Virtual Conference on Advanced Scientific Results. Publishing Society, 2016. http://dx.doi.org/10.18638/scieconf.2016.4.1.356.
Pełny tekst źródłaTrandafirescu, Marioara. "SELECTING APRICOT TREE GENITORS FOR THE OBTAINING OF NEW CULTIVARS RESISTANT TO THE PLUM POX VIRUS (PPV)". W 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2015. http://dx.doi.org/10.5593/sgem2015/b61/s25.073.
Pełny tekst źródłaAngelova, Liliya, Antoniy Stoev, Ekaterina Borisova i Latchezar Avramov. "Detection of plum pox virus infection in selection plum trees using spectral imaging". W International Conference and School on Quantum Electronics "Laser Physics and Applications" - ICSQE 2016, redaktorzy Tanja Dreischuh, Sanka Gateva, Albena Daskalova i Alexandros Serafetinides. SPIE, 2017. http://dx.doi.org/10.1117/12.2261807.
Pełny tekst źródła"Drought resistance in some Prunus persica (L.) Batsch cultivars damaged with Plum Pox Virus". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-034.
Pełny tekst źródła