Artykuły w czasopismach na temat „Polyamide 11 (PA11)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Polyamide 11 (PA11)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bahrami, Mohsen, Juana Abenojar, and Miguel Angel Martínez. "Comparative Characterization of Hot-Pressed Polyamide 11 and 12: Mechanical, Thermal and Durability Properties." Polymers 13, no. 20 (2021): 3553. http://dx.doi.org/10.3390/polym13203553.
Pełny tekst źródłaĐinh, Thế Dũng, Nguyen Tran Hung, Le Minh Tri, Le Huu Dat, Nguyen Vu Giang, and Pham Thi Thanh Nhan. "Study on the development of 3D printing materials based on blend of polyamide 6 and polyamide 11." Journal of Military Science and Technology 102 (April 15, 2025): 101–8. https://doi.org/10.54939/1859-1043.j.mst.102.2025.101-108.
Pełny tekst źródłaLao, S. C., J. H. Koo, T. J. Moon, et al. "Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies." Journal of Fire Sciences 29, no. 6 (2011): 479–98. http://dx.doi.org/10.1177/0734904111404658.
Pełny tekst źródłaKhan, Zahid Iqbal, Zurina Binti Mohamad, Abdul Razak Bin Rahmat, Unsia Habib, and Nur Amira Sahirah Binti Abdullah. "A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend." Progress in Rubber, Plastics and Recycling Technology 37, no. 3 (2021): 233–44. http://dx.doi.org/10.1177/14777606211001074.
Pełny tekst źródłaWang, Sheng Qin, Mohit Sharma, and Yew Wei Leong. "Polyamide 11/Clay Nanocomposite Using Polyhedral Oligomeric Silsesquioxane Surfactants." Advanced Materials Research 1110 (June 2015): 65–68. http://dx.doi.org/10.4028/www.scientific.net/amr.1110.65.
Pełny tekst źródłaLods, Louise, Tutea Richmond, Jany Dandurand, et al. "Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite." Polymers 14, no. 2 (2022): 299. http://dx.doi.org/10.3390/polym14020299.
Pełny tekst źródłaGunputh, Urvashi F., Gavin Williams, Marzena Pawlik, Yiling Lu, and Paul Wood. "Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11." Polymers 15, no. 23 (2023): 4602. http://dx.doi.org/10.3390/polym15234602.
Pełny tekst źródłaOulmou, F., A. Benhamida, A. Dorigato, A. Sola, M. Messori, and A. Pegoretti. "Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11." Journal of Elastomers & Plastics 51, no. 2 (2018): 175–90. http://dx.doi.org/10.1177/0095244318781956.
Pełny tekst źródłaLi, Yongjin, Yuko Iwakura, and Hiroshi Shimizu. "Crystal Form and Phase Structure of Poly(vinylidene fluoride)/Polyamide 11/Clay Nanocomposites by High-Shear Processing." Journal of Nanoscience and Nanotechnology 8, no. 4 (2008): 1714–20. http://dx.doi.org/10.1166/jnn.2008.18235.
Pełny tekst źródłaSahnoune, Mohamed, Mustapha Kaci, Aurélie Taguet, et al. "Tribological and mechanical properties of polyamide-11/halloysite nanotube nanocomposites." Journal of Polymer Engineering 39, no. 1 (2018): 25–34. http://dx.doi.org/10.1515/polyeng-2018-0131.
Pełny tekst źródłaTey, Wei Shian, Chao Cai, and Kun Zhou. "A Comprehensive Investigation on 3D Printing of Polyamide 11 and Thermoplastic Polyurethane via Multi Jet Fusion." Polymers 13, no. 13 (2021): 2139. http://dx.doi.org/10.3390/polym13132139.
Pełny tekst źródłaSergi, Claudia, Libera Vitiello, Pietro Russo, Jacopo Tirillò, and Fabrizio Sarasini. "Toughened Bio-Polyamide 11 for Impact-Resistant Intraply Basalt/Flax Hybrid Composites." Macromol 2, no. 2 (2022): 154–67. http://dx.doi.org/10.3390/macromol2020010.
Pełny tekst źródłaZhu, Feichao, Bin Yu, Juanjuan Su, and Jian Han. "Study on PLA/PA11 Bio-Based Toughening Melt-Blown Nonwovens." Autex Research Journal 20, no. 1 (2020): 24–31. http://dx.doi.org/10.2478/aut-2019-0002.
Pełny tekst źródłaDo, Van Cong, Vu Giang Nguyen, Huu Trung Tran, et al. "Novel research on polyamide 11 nanocomposites reinforced by Titania nanoparticle deposited jute fibres." Vietnam Journal of Science and Technology 60, no. 6 (2022): 1032–43. http://dx.doi.org/10.15625/2525-2518/16554.
Pełny tekst źródłaHongsriphan, Nattakarn, Kantika Somboon, Chutikan Paujai, and Thitichaya Taengto. "Mechanical Enhancement and Thermal Stability of Composites between Polyamide 11 and Functionalized Graphene Nanoplatelets." Key Engineering Materials 858 (August 2020): 59–65. http://dx.doi.org/10.4028/www.scientific.net/kem.858.59.
Pełny tekst źródłaFazli, Ali, and Denis Rodrigue. "Biosourced Poly(lactic acid)/polyamide-11 Blends: Effect of an Elastomer on the Morphology and Mechanical Properties." Molecules 27, no. 20 (2022): 6819. http://dx.doi.org/10.3390/molecules27206819.
Pełny tekst źródłaIz, Muhammet, Jinhyok Lee, Myungchan Choi, Yumi Yun, and Jongwoo Bae. "The Effect of Polyamide 11 on the Thermal Stability and Light Transmittance of Silicone-Based Thermoplastic Vulcanizates." Polymers 16, no. 3 (2024): 324. http://dx.doi.org/10.3390/polym16030324.
Pełny tekst źródłaPanaitescu, Denis Mihaela, Raluca Augusta Gabor, Adriana Nicoleta Frone, and Eugeniu Vasile. "Influence of Thermal Treatment on Mechanical and Morphological Characteristics of Polyamide 11/Cellulose Nanofiber Nanocomposites." Journal of Nanomaterials 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/136204.
Pełny tekst źródłaDechet, Maximilian A., Anja Goblirsch, Stefan Romeis, et al. "Production of polyamide 11 microparticles for Additive Manufacturing by liquid-liquid phase separation and precipitation." Chemical Engineering Science 197 (April 1, 2019): 11–25. https://doi.org/10.1016/j.ces.2018.11.051.
Pełny tekst źródłaJeziorska, Regina, Agnieszka Szadkowska, and Maciej Studzinski. "Morphology and Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)/Polyamide 11 Hybrid Nanocomposites: Effect of Silica Surface Modification." Materials 15, no. 10 (2022): 3421. http://dx.doi.org/10.3390/ma15103421.
Pełny tekst źródłaPeng, Cun, Hua Yang, and Wufei Tang. "Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides." International Journal of Molecular Sciences 23, no. 21 (2022): 12818. http://dx.doi.org/10.3390/ijms232112818.
Pełny tekst źródłaLebaupin, Yann, Michaël Chauvin, Thuy-Quynh Truong Hoang, Fabienne Touchard, and Alexandre Beigbeder. "Influence of constituents and process parameters on mechanical properties of flax fibre-reinforced polyamide 11 composite." Journal of Thermoplastic Composite Materials 30, no. 11 (2016): 1503–21. http://dx.doi.org/10.1177/0892705716644669.
Pełny tekst źródłaZhu, Feichao, Juanjuan Su, Mingjun Wang, Munir Hussain, Bin Yu, and Jian Han. "Study on dual-monomer melt-grafted poly(lactic acid) compatibilized poly(lactic acid)/polyamide 11 blends and toughened melt-blown nonwovens." Journal of Industrial Textiles 49, no. 6 (2018): 748–72. http://dx.doi.org/10.1177/1528083718795913.
Pełny tekst źródłaDintcheva, N. Tz, G. Filippone, R. Arrigo, and F. P. La Mantia. "Low-Density Polyethylene/Polyamide/Clay Blend Nanocomposites: Effect of Morphology of Clay on Their Photooxidation Resistance." Journal of Nanomaterials 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/3549475.
Pełny tekst źródłaLi, Rui, Bin Xue, and Jianzhong Pei. "Enhancement of the dielectric performance of PA11/PVDF blends by a solution method with dimethyl sulfoxide." e-Polymers 15, no. 6 (2015): 439–45. http://dx.doi.org/10.1515/epoly-2015-0131.
Pełny tekst źródłaHuynh, Mai Duc. "PREPARATION OF POLYAMIDE11/BAMBOO FLOUR POLYMER COMPOSITE USING POLYVINYL ALCOHOL AS COMPATIBILIZER." Vietnam Journal of Science and Technology 56, no. 2A (2018): 209–16. http://dx.doi.org/10.15625/2525-2518/56/2a/12688.
Pełny tekst źródłaPuglisi, Roberta, Andrea Antonino Scamporrino, Nadka Tzankova Dintcheva, et al. "Photo- and Water-Degradation Phenomena of ZnO Bio-Blend Based on Poly(lactic acid) and Polyamide 11." Polymers 15, no. 6 (2023): 1434. http://dx.doi.org/10.3390/polym15061434.
Pełny tekst źródłaMandlekar, Neeraj, Aurélie Cayla, François Rault, Stéphane Giraud, Fabien Salaün, and Jinping Guan. "Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends." Polymers 11, no. 1 (2019): 180. http://dx.doi.org/10.3390/polym11010180.
Pełny tekst źródłaJaouadi, Nour, Mohamed Jaziri, Abderrahim Maazouz, and Khalid Lamnawar. "Biosourced Multiphase Systems Based on Poly(Lactic Acid) and Polyamide 11 from Blends to Multi-Micro/Nanolayer Polymers Fabricated with Forced-Assembly Multilayer Coextrusion." International Journal of Molecular Sciences 24, no. 23 (2023): 16737. http://dx.doi.org/10.3390/ijms242316737.
Pełny tekst źródłaPébère, Clément, Gautier Mangeret, Eric Dantras, et al. "Mechanical Properties of Surface-Treated Bamboo Strip-Reinforced Biobased Polyamide Composites." Polymers 17, no. 10 (2025): 1379. https://doi.org/10.3390/polym17101379.
Pełny tekst źródłaDobrosielska, Marta, Renata Dobrucka, Paulina Kozera, et al. "Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules." Polymers 14, no. 15 (2022): 3153. http://dx.doi.org/10.3390/polym14153153.
Pełny tekst źródłaDobrosielska, Marta, Renata Dobrucka, Dariusz Brząkalski, et al. "Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties." Polymers 15, no. 6 (2023): 1563. http://dx.doi.org/10.3390/polym15061563.
Pełny tekst źródłaRasselet, Damien, Anne-Sophie Caro-Bretelle, Aurélie Taguet, and José-Marie Lopez-Cuesta. "Reactive Compatibilization of PLA/PA11 Blends and Their Application in Additive Manufacturing." Materials 12, no. 3 (2019): 485. http://dx.doi.org/10.3390/ma12030485.
Pełny tekst źródłaZheng, Xiaofang, Yongzhong Huang, Shaodi Zheng, Zhengying Liu, and Mingbo Yang. "Improved dielectric properties of polymer-based composites with carboxylic functionalized multiwalled carbon nanotubes." Journal of Thermoplastic Composite Materials 32, no. 4 (2018): 473–86. http://dx.doi.org/10.1177/0892705718762614.
Pełny tekst źródłaMorici, Elisabetta, Giulia Infurna, and Nadka Tz Dintcheva. "Ecofriendly Biopolymer-Based Nanocomposite Films with Improved Photo-Oxidative Resistance." Materials 15, no. 16 (2022): 5778. http://dx.doi.org/10.3390/ma15165778.
Pełny tekst źródłaSillani, Francesco, Ramis Schiegg, Manfred Schmid, Eric MacDonald, and Konrad Wegener. "Powder Surface Roughness as Proxy for Bed Density in Powder Bed Fusion of Polymers." Polymers 14, no. 1 (2021): 81. http://dx.doi.org/10.3390/polym14010081.
Pełny tekst źródłaFernández-Álvarez, Maria, Francisco Velasco, Asuncion Bautista, Flavia Cristina M. Lobo, Emanuel M. Fernandes, and Rui L. Reis. "Manufacturing and Characterization of Coatings from Polyamide Powders Functionalized with Nanosilica." Polymers 12, no. 10 (2020): 2298. http://dx.doi.org/10.3390/polym12102298.
Pełny tekst źródłaGean, V. Salmoria, M. Gindri Izabelle, and F. M. Martins Waldemar. "Comparing Oxygen Plasma, Hydrogen Peroxide and Flame Treatments of Polyamide Tubes to Hydrophilic Coating Adhesion." International Journal of Engineering Research & Science 6, no. 10 (2020): 13–18. https://doi.org/10.5281/zenodo.4159645.
Pełny tekst źródłaDong, Chufeng, Yitao Liu, Jiepu Li, et al. "Hydrogen Permeability of Polyamide 6 Used as Liner Material for Type IV On-Board Hydrogen Storage Cylinders." Polymers 15, no. 18 (2023): 3715. http://dx.doi.org/10.3390/polym15183715.
Pełny tekst źródłaUssia, Martina, Giusy Curcuruto, Daniela Zampino, et al. "Role of Organo-Modifier and Metal Impurities of Commercial Nanoclays in the Photo- and Thermo-Oxidation of Polyamide 11 Nanocomposites." Polymers 12, no. 5 (2020): 1034. http://dx.doi.org/10.3390/polym12051034.
Pełny tekst źródłaMorici, Elisabetta, Giuseppe Pecoraro, Sabrina Carola Carroccio, et al. "Understanding the Effects of Adding Metal Oxides to Polylactic Acid and Polylactic Acid Blends on Mechanical and Rheological Behaviour, Wettability, and Photo-Oxidation Resistance." Polymers 16, no. 7 (2024): 922. http://dx.doi.org/10.3390/polym16070922.
Pełny tekst źródłaTonello, Riccardo, Knut Conradsen, David Bue Pedersen, and Jeppe Revall Frisvad. "Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering." Polymers 15, no. 13 (2023): 2967. https://doi.org/10.3390/polym15132967.
Pełny tekst źródłaMandlekar, Neeraj, Aurélie Cayla, François Rault, Stéphane Giraud, Fabien Salaün, and Jinping Guan. "Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants." Molecules 25, no. 21 (2020): 4963. http://dx.doi.org/10.3390/molecules25214963.
Pełny tekst źródłaKhan, Z. I., U. Habib, Z. B. Mohamad, and A. M. Raji. "Enhanced mechanical properties of a novel compatibilized recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) blends." Express Polymer Letters 15, no. 12 (2021): 1206–15. http://dx.doi.org/10.3144/expresspolymlett.2021.96.
Pełny tekst źródłaSergi, Claudia, Libera Vitiello, Patrick Dang, Pietro Russo, Jacopo Tirillò, and Fabrizio Sarasini. "Low Molecular Weight Bio-Polyamide 11 Composites Reinforced with Flax and Intraply Flax/Basalt Hybrid Fabrics for Eco-Friendlier Transportation Components." Polymers 14, no. 22 (2022): 5053. http://dx.doi.org/10.3390/polym14225053.
Pełny tekst źródłaRusso, Pietro, Giorgio Simeoli, Libera Vitiello, and Giovanni Filippone. "Bio-Polyamide 11 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications." Fibers 7, no. 5 (2019): 41. http://dx.doi.org/10.3390/fib7050041.
Pełny tekst źródłaWu, Hao, Rogelio Ortiz, and Joseph H. Koo. "Rubber toughened flame retardant (FR) polyamide 11 nanocomposites Part 1: the effect of SEBS-g-MA elastomer and nanoclay." Flame Retardancy and Thermal Stability of Materials 1, no. 1 (2018): 25–38. http://dx.doi.org/10.1515/flret-2018-0003.
Pełny tekst źródłaBaron, Marc, Mamy-Daniel Rakotorinina, Mohamed Ihab El Assil, et al. "Melt radical grafting of diethylmaleate and maleic anhydride onto oligoamide-11 (OA11) and polyamide-11 (PA11) in presence of acyloxyimide derivatives: Toward the compatibilization of PA11/EVOH blends." Materials Today Communications 19 (June 2019): 271–76. http://dx.doi.org/10.1016/j.mtcomm.2019.02.003.
Pełny tekst źródłaYu, Muhuo, Liangliang Qi, Lele Cheng, et al. "The Effect of Cooling Rates on Thermal, Crystallization, Mechanical and Barrier Properties of Rotational Molding Polyamide 11 as the Liner Material for High-Capacity High-Pressure Vessels." Molecules 28, no. 6 (2023): 2425. http://dx.doi.org/10.3390/molecules28062425.
Pełny tekst źródłaSharma, Mohit, Sheng Qin Wang, and Yew Wei Leong. "Wear Resistance Properties of Nylon-SiC Hybrids Composites." Advanced Materials Research 1110 (June 2015): 88–91. http://dx.doi.org/10.4028/www.scientific.net/amr.1110.88.
Pełny tekst źródła