Artykuły w czasopismach na temat „Preclinical tumor models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Preclinical tumor models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Varticovski, L., M. G. Hollingshead, M. R. Anver, et al. "Preclinical testing using tumors from genetically engineered mouse mammary models." Journal of Clinical Oncology 24, no. 18_suppl (2006): 10067. http://dx.doi.org/10.1200/jco.2006.24.18_suppl.10067.
Pełny tekst źródłaKlenner, Marbod, Pia Freidel, Mariella G. Filbin, and Alexander Beck. "DIPG-39. New preclinical models for Diffuse Midline Glioma." Neuro-Oncology 24, Supplement_1 (2022): i27. http://dx.doi.org/10.1093/neuonc/noac079.096.
Pełny tekst źródłaLlaguno-Munive, Monserrat, Wilberto Villalba-Abascal, Alejandro Avilés-Salas, and Patricia Garcia-Lopez. "Near-Infrared Fluorescence Imaging in Preclinical Models of Glioblastoma." Journal of Imaging 9, no. 10 (2023): 212. http://dx.doi.org/10.3390/jimaging9100212.
Pełny tekst źródłaCosta, Alice, Livia Gozzellino, Margherita Nannini, Annalisa Astolfi, Maria Abbondanza Pantaleo, and Gianandrea Pasquinelli. "Preclinical Models of Visceral Sarcomas." Biomolecules 13, no. 11 (2023): 1624. http://dx.doi.org/10.3390/biom13111624.
Pełny tekst źródłaRoosen, Mieke, Chris Meulenbroeks, Phylicia Stathi, et al. "BIOL-11. PRECLINICAL MODELLING OF PEDIATRIC BRAIN TUMORS USING ORGANOID TECHNOLOGY." Neuro-Oncology 25, Supplement_1 (2023): i8. http://dx.doi.org/10.1093/neuonc/noad073.030.
Pełny tekst źródłaSewduth, Raj N., and Konstantina Georgelou. "Relevance of Carcinogen-Induced Preclinical Cancer Models." Journal of Xenobiotics 14, no. 1 (2024): 96–109. http://dx.doi.org/10.3390/jox14010006.
Pełny tekst źródłaOrtiz, Michael Vincent, Armaan Siddiquee, Daoqi You, et al. "Preclinical evaluation of XPO1 inhibition in Wilms tumors." Journal of Clinical Oncology 38, no. 15_suppl (2020): 3580. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.3580.
Pełny tekst źródłaSitta, Juliana, Pier Paolo Claudio, and Candace M. Howard. "Virus-Based Immuno-Oncology Models." Biomedicines 10, no. 6 (2022): 1441. http://dx.doi.org/10.3390/biomedicines10061441.
Pełny tekst źródłaBella, Ángela, Claudia Augusta Di Trani, Myriam Fernández-Sendin, et al. "Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications." Cancers 13, no. 5 (2021): 963. http://dx.doi.org/10.3390/cancers13050963.
Pełny tekst źródłaStripay, Jennifer L., Thomas E. Merchant, Martine F. Roussel, and Christopher L. Tinkle. "Preclinical Models of Craniospinal Irradiation for Medulloblastoma." Cancers 12, no. 1 (2020): 133. http://dx.doi.org/10.3390/cancers12010133.
Pełny tekst źródłaJarry, Ulrich, Megane Bostoen, Jérome Archambeau, et al. "Afatinib or Bevacizumab in combination with Osimertinib efficiently control tumor development in orthotopic murine models of non-small lung cancer." PLOS ONE 19, no. 6 (2024): e0304914. http://dx.doi.org/10.1371/journal.pone.0304914.
Pełny tekst źródłaTada, Takuya, Thomas D. Norton, Rebecca Leibowitz, and Nathaniel R. Landau. "Checkpoint inhibitor-expressing lentiviral vaccine suppresses tumor growth in preclinical cancer models." Journal for ImmunoTherapy of Cancer 12, no. 4 (2024): e008761. http://dx.doi.org/10.1136/jitc-2023-008761.
Pełny tekst źródłaYu, Jie-Zeng, Zsofia Kiss, Weijie Ma, Ruqiang Liang, and Tianhong Li. "Preclinical Models for Functional Precision Lung Cancer Research." Cancers 17, no. 1 (2024): 22. https://doi.org/10.3390/cancers17010022.
Pełny tekst źródłaBaniahmad, Aria. "Tumor spheroids and organoids as preclinical model systems." Medizinische Genetik 33, no. 3 (2021): 229–34. http://dx.doi.org/10.1515/medgen-2021-2093.
Pełny tekst źródłaMahmoudian, Reihaneh Alsadat, Moein Farshchian, Fatemeh Fardi Golyan, et al. "Preclinical tumor mouse models for studying esophageal cancer." Critical Reviews in Oncology/Hematology 189 (September 2023): 104068. http://dx.doi.org/10.1016/j.critrevonc.2023.104068.
Pełny tekst źródłaTellez-Gabriel, Marta, Denis Cochonneau, Marie Cadé, Camille Jubelin, Marie-Françoise Heymann, and Dominique Heymann. "Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine." Cancers 11, no. 1 (2018): 19. http://dx.doi.org/10.3390/cancers11010019.
Pełny tekst źródłaRodgers, Louis T., Bryan J. Maloney, Anika M. S. Hartz, and Björn Bauer. "Fluorescence-Guided Resection of GL261 Red-FLuc and TRP-mCherry-FLuc Mouse Glioblastoma Tumors." Cancers 17, no. 5 (2025): 734. https://doi.org/10.3390/cancers17050734.
Pełny tekst źródłaEhrenberg, Karl Roland, Jianpeng Gao, Felix Oppel, et al. "Systematic Generation of Patient-Derived Tumor Models in Pancreatic Cancer." Cells 8, no. 2 (2019): 142. http://dx.doi.org/10.3390/cells8020142.
Pełny tekst źródłaPinto, Bárbara, Ana C. Henriques, Patrícia M. A. Silva, and Hassan Bousbaa. "Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research." Pharmaceutics 12, no. 12 (2020): 1186. http://dx.doi.org/10.3390/pharmaceutics12121186.
Pełny tekst źródłaKoptyra, Mateusz, Valerie Baubet, David Beale, et al. "MODL-30. Children’s Brain Tumor Network preclinical tumor models development and sharing platform: collaborative model empowering pediatric brain tumor discovery and global research." Neuro-Oncology 24, Supplement_1 (2022): i175—i176. http://dx.doi.org/10.1093/neuonc/noac079.653.
Pełny tekst źródłaDavy, Mélodie, Laurie Genest, Christophe Legrand, et al. "Evaluation of Temozolomide and Fingolimod Treatments in Glioblastoma Preclinical Models." Cancers 15, no. 18 (2023): 4478. http://dx.doi.org/10.3390/cancers15184478.
Pełny tekst źródłaMinami, Jenna, Nicholas Bayley, Christopher Tse, et al. "TAMI-06. PRECLINICAL MODELS REVEAL BRAIN-MICROENVIRONMENT SPECIFIC METABOLIC DEPENDENCIES IN GLIOBLASTOMA." Neuro-Oncology 22, Supplement_2 (2020): ii214. http://dx.doi.org/10.1093/neuonc/noaa215.895.
Pełny tekst źródłaHollawell, Madison, Valerie Baubet, David Beale, et al. "BIOL-22. CHILDREN’S BRAIN TUMOR NETWORK PRECLINICAL TUMOR MODELS DEVELOPMENT AND SHARING PLATFORM: COLLABORATIVE MODEL EMPOWERING PEDIATRIC BRAIN TUMOR DISCOVERY AND GLOBAL RESEARCH." Neuro-Oncology 25, Supplement_1 (2023): i10—i11. http://dx.doi.org/10.1093/neuonc/noad073.041.
Pełny tekst źródłaMohr, Hermine, and Natalia S. Pellegata. "Animal models of MEN1." Endocrine-Related Cancer 24, no. 10 (2017): T161—T177. http://dx.doi.org/10.1530/erc-17-0249.
Pełny tekst źródłaHansson, Karin, Katarzyna Radke, Kristina Aaltonen, et al. "Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma." Science Translational Medicine 12, no. 562 (2020): eaba4434. http://dx.doi.org/10.1126/scitranslmed.aba4434.
Pełny tekst źródłaMinami, Jenna, Nicholas Bayley, Christopher Tse, et al. "ETMM-02. PRECLINICAL MODELS REVEAL BRAIN-MICROENVIRONMENT SPECIFIC METABOLIC DEPENDENCIES IN GLIOBLASTOMA." Neuro-Oncology Advances 3, Supplement_1 (2021): i14. http://dx.doi.org/10.1093/noajnl/vdab024.058.
Pełny tekst źródłaForde, Patrick F., Mira Sadadcharam, Michael G. Bourke, et al. "Preclinical evaluation of an endoscopic electroporation system." Endoscopy 48, no. 05 (2016): 477–83. http://dx.doi.org/10.1055/s-0042-101343.
Pełny tekst źródłaErnst, Kati, Konstantin Okonechnikov, Laura von Soosten, et al. "BIOL-07. DISTINCTIVE FEATURES OF HIGH-GRADE GLIOMA MOUSE MODELS REVEALED BY SINGLE-NUCLEUS RNA-SEQUENCING GUIDE PRE-CLINICAL MODEL SELECTION." Neuro-Oncology 25, Supplement_1 (2023): i7. http://dx.doi.org/10.1093/neuonc/noad073.026.
Pełny tekst źródłaSgouros, George, Robert F. Hobbs, and Diane S. Abou. "The Role of Preclinical Models in Radiopharmaceutical Therapy." American Society of Clinical Oncology Educational Book, no. 34 (May 2014): e121-e125. http://dx.doi.org/10.14694/edbook_am.2014.34.e121.
Pełny tekst źródłaDobson, Tara, and Vidya Gopalakrishnan. "Preclinical Models of Pediatric Brain Tumors—Forging Ahead." Bioengineering 5, no. 4 (2018): 81. http://dx.doi.org/10.3390/bioengineering5040081.
Pełny tekst źródłaDondossola, Eleonora, Andrey S. Dobroff, Serena Marchiò, et al. "Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors." Proceedings of the National Academy of Sciences 113, no. 8 (2016): 2223–28. http://dx.doi.org/10.1073/pnas.1525697113.
Pełny tekst źródłaKenkre, Rishaan, Owen Chapman, Jens Luebeck, et al. "STEM-07. CONSERVATION AND FAITHFUL REPRESENTATION OF CIRCULAR EXTRACHROMOSOMAL DNA IN ORTHOTOPIC PATIENT-DERIVED MEDULLOBLASTOMA XENOGRAFTS." Neuro-Oncology 26, Supplement_4 (2024): 0. http://dx.doi.org/10.1093/neuonc/noae064.778.
Pełny tekst źródłaYildiz, Merve, Andrea Romano, and Sofia Xanthoulea. "Murine Xenograft Models as Preclinical Tools in Endometrial Cancer Research." Cancers 16, no. 23 (2024): 3994. http://dx.doi.org/10.3390/cancers16233994.
Pełny tekst źródłaKalra, Jessica, Jennifer Baker, Justin Song, Alastair Kyle, Andrew Minchinton, and Marcel Bally. "Inter-Metastatic Heterogeneity of Tumor Marker Expression and Microenvironment Architecture in a Preclinical Cancer Model." International Journal of Molecular Sciences 22, no. 12 (2021): 6336. http://dx.doi.org/10.3390/ijms22126336.
Pełny tekst źródłaHicks, William H., Cylaina E. Bird, Jeffrey I. Traylor, et al. "Contemporary Mouse Models in Glioma Research." Cells 10, no. 3 (2021): 712. http://dx.doi.org/10.3390/cells10030712.
Pełny tekst źródłaVitale, Giovanni, Silvia Carra, Ylenia Alessi, et al. "Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies." International Journal of Molecular Sciences 24, no. 4 (2023): 3610. http://dx.doi.org/10.3390/ijms24043610.
Pełny tekst źródłaChauhan, Aman, Piotr Rychahou, Tadahide Izumi, et al. "Antitumor efficacy of M3814 as a radiation sensitizer in neuroendocrine tumor (NET) preclinical models." Journal of Clinical Oncology 37, no. 15_suppl (2019): e15699-e15699. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e15699.
Pełny tekst źródłaMcCloskey, Curtis, Galaxia Rodriguez, Kristianne Galpin, and Barbara Vanderhyden. "Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics." Cancers 10, no. 8 (2018): 244. http://dx.doi.org/10.3390/cancers10080244.
Pełny tekst źródłaIndersie, Emilie, Léa Sinayen, Aurore Gorse, et al. "Abstract 1289: A preclinical platform of PDX breast cancer models and their cellular counterparts to identify resistance mechanisms and novel therapeutic options." Cancer Research 85, no. 8_Supplement_1 (2025): 1289. https://doi.org/10.1158/1538-7445.am2025-1289.
Pełny tekst źródłaSpoormans, Kaat, Melissa Crabbé, Lara Struelens, Marijke De Saint-Hubert, and Michel Koole. "A Review on Tumor Control Probability (TCP) and Preclinical Dosimetry in Targeted Radionuclide Therapy (TRT)." Pharmaceutics 14, no. 10 (2022): 2007. http://dx.doi.org/10.3390/pharmaceutics14102007.
Pełny tekst źródłaChen, Stephen R., Frederick F. Lang, and Peter Kan. "Preclinical animal brain tumor models for interventional neuro-oncology." Journal of NeuroInterventional Surgery 14, no. 5 (2022): neurintsurg—2022–018968. http://dx.doi.org/10.1136/neurintsurg-2022-018968.
Pełny tekst źródłaWu, Jianrong, and Peter J. Houghton. "Assessing Cytotoxic Treatment Effects in Preclinical Tumor Xenograft Models." Journal of Biopharmaceutical Statistics 19, no. 5 (2009): 755–62. http://dx.doi.org/10.1080/10543400903105158.
Pełny tekst źródłaBanerjee, Sulagna, Venugopal Thayanithy, Veena Sangwan, Tiffany N. Mackenzie, Ashok K. Saluja, and Subbaya Subramanian. "Minnelide reduces tumor burden in preclinical models of osteosarcoma." Cancer Letters 335, no. 2 (2013): 412–20. http://dx.doi.org/10.1016/j.canlet.2013.02.050.
Pełny tekst źródłaGolebiewska, Anna, Ann-Christin Hau, Anais Oudin, et al. "TMOD-08. PRIMARY AND RECURRENT GLIOMA PATIENT-DERIVED ORTHOTOPIC XENOGRAFTS (PDOX) REPRESENT RELEVANT PATIENT AVATARS FOR PRECISION MEDICINE." Neuro-Oncology 22, Supplement_2 (2020): ii229. http://dx.doi.org/10.1093/neuonc/noaa215.959.
Pełny tekst źródłaHaskell-Mendoza, Aden, Lucas Wachsmuth, and Peter Fecci. "LMAP-09 RECAPITULATING LASER INTERSTITIAL THERMAL THERAPY IN PRECLINICAL BRAIN TUMOR MODELS." Neuro-Oncology Advances 5, Supplement_3 (2023): iii11. http://dx.doi.org/10.1093/noajnl/vdad070.040.
Pełny tekst źródłaGadwa, Jacob, Justin Yu, Miles Piper, et al. "Divergent response to radio-immunotherapy is defined by intrinsic features of the tumor microenvironment." Journal for ImmunoTherapy of Cancer 13, no. 1 (2025): e010405. https://doi.org/10.1136/jitc-2024-010405.
Pełny tekst źródłaLee, Jung Woo, Jia Kim, Youngjae Shin, Byung Hoon Chi, Jung Hoon Kim, and Se Young Choi. "Patient-Specific Tumor Microenvironment Models." Korean Journal of Urological Oncology 19, no. 4 (2021): 197–222. http://dx.doi.org/10.22465/kjuo.2021.19.4.197.
Pełny tekst źródłaSaito, Yasuyuki, Afroj Tania, Satomi Komori та ін. "Preclinical Evaluation of the Efficacy of Human Sirpα Antibodies for B-Cell Lymphoma Immunotherapy in Humanized Mouse Models". Blood 142, Supplement 1 (2023): 1646. http://dx.doi.org/10.1182/blood-2023-181926.
Pełny tekst źródłaBarachini, Serena, Mariangela Morelli, Orazio Santo Santonocito, and Chiara Maria Mazzanti. "Preclinical glioma models in neuro-oncology: enhancing translational research." Current Opinion in Oncology 35, no. 6 (2023): 536–42. http://dx.doi.org/10.1097/cco.0000000000000997.
Pełny tekst źródłaGrausam, Katie, David Rincon Fernandez Pacheco, Emily Hatanaka, Stephen Shiao, and Joshua Breunig. "MODL-34. A SERIES OF EGFR-MUTANT MODELS OF GLIOBLASTOMA THAT RECAPITULATES PATIENT TUMOR HETEROGENEITY AND RESPONSE TO TREATMENT." Neuro-Oncology 25, Supplement_5 (2023): v306. http://dx.doi.org/10.1093/neuonc/noad179.1185.
Pełny tekst źródła