Gotowa bibliografia na temat „Prediction of binding affinity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Prediction of binding affinity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Prediction of binding affinity"
Kondabala, Rajesh, Vijay Kumar, Amjad Ali, and Manjit Kaur. "A novel astrophysics-based framework for prediction of binding affinity of glucose binder." Modern Physics Letters B 34, no. 31 (2020): 2050346. http://dx.doi.org/10.1142/s0217984920503467.
Pełny tekst źródłaKwon, Yongbeom, Woong-Hee Shin, Junsu Ko, and Juyong Lee. "AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks." International Journal of Molecular Sciences 21, no. 22 (2020): 8424. http://dx.doi.org/10.3390/ijms21228424.
Pełny tekst źródłaAntunes, Dinler A., Jayvee R. Abella, Didier Devaurs, Maurício M. Rigo, and Lydia E. Kavraki. "Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes." Current Topics in Medicinal Chemistry 18, no. 26 (2019): 2239–55. http://dx.doi.org/10.2174/1568026619666181224101744.
Pełny tekst źródłaWang, Debby D., Haoran Xie, and Hong Yan. "Proteo-chemometrics interaction fingerprints of protein–ligand complexes predict binding affinity." Bioinformatics 37, no. 17 (2021): 2570–79. http://dx.doi.org/10.1093/bioinformatics/btab132.
Pełny tekst źródłaHan, Rong, Xiaohong Liu, Tong Pan, et al. "CoPRA: Bridging Cross-domain Pretrained Sequence Models with Complex Structures for Protein-RNA Binding Affinity Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 246–54. https://doi.org/10.1609/aaai.v39i1.32001.
Pełny tekst źródłaNguyen, Austin, Abhinav Nellore, and Reid F. Thompson. "Discordant results among major histocompatibility complex binding affinity prediction tools." F1000Research 12 (June 7, 2023): 617. http://dx.doi.org/10.12688/f1000research.132538.1.
Pełny tekst źródłaShar, Piar Ali, Weiyang Tao, Shuo Gao, et al. "Pred-binding: large-scale protein–ligand binding affinity prediction." Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. 6 (2016): 1443–50. http://dx.doi.org/10.3109/14756366.2016.1144594.
Pełny tekst źródłaHusnul, Khotimah, Jatmiko Widy, Nur Azizah Dita та ін. "Prediction of drug candidate from Rosmarinus officinalis L to inhibit IL-6R, IL-1R1, and TNF-α: In silico study". World Journal of Advanced Research and Reviews 21, № 2 (2024): 252–60. https://doi.org/10.5281/zenodo.13995362.
Pełny tekst źródłaWang, Xun, Dayan Liu, Jinfu Zhu, Alfonso Rodriguez-Paton, and Tao Song. "CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction." Biomolecules 11, no. 5 (2021): 643. http://dx.doi.org/10.3390/biom11050643.
Pełny tekst źródłaLangham, James J., Ann E. Cleves, Russell Spitzer, Daniel Kirshner, and Ajay N. Jain. "Physical Binding Pocket Induction for Affinity Prediction." Journal of Medicinal Chemistry 52, no. 19 (2009): 6107–25. http://dx.doi.org/10.1021/jm901096y.
Pełny tekst źródłaRozprawy doktorskie na temat "Prediction of binding affinity"
Jovanovic, Srdan. "Rapid, precise and reproducible binding affinity prediction : applications in drug discovery." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10053853/.
Pełny tekst źródłaUslan, Volkan. "Support vector machine-based fuzzy systems for quantitative prediction of peptide binding affinity." Thesis, De Montfort University, 2015. http://hdl.handle.net/2086/11170.
Pełny tekst źródłaBodnarchuk, Michael. "Predicting the location and binding affinity of small molecules in protein binding sites." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/348170/.
Pełny tekst źródłaErdas, Ozlem. "Modelling And Predicting Binding Affinity Of Pcp-like Compounds Using Machine Learning Methods." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608792/index.pdf.
Pełny tekst źródłaGuedes, Isabella Alvim. "Development of empirical scoring funcions forn predicting proteinligand binding affinity." Laboratório Nacional de Computação Científica, 2016. https://tede.lncc.br/handle/tede/247.
Pełny tekst źródłaMatereke, Lavious Tapiwa. "Analysis of predictive power of binding affinity of PBM-derived sequences." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1018666.
Pełny tekst źródłaYoldas, Mine. "Predicting The Effect Of Hydrophobicity Surface On Binding Affinity Of Pcp-like Compounds Using Machine Learning Methods." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613215/index.pdf.
Pełny tekst źródłaShoemake, Claire. "The use of static and dynamic models for the prediction of ligand binding affinity using oestrogen and androgen nuclear receptors as case studies." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.478985.
Pełny tekst źródłaAtkovska, Kalina, Sergey A. Samsonov, Maciej Paszkowski-Rogacz, and M. Teresa Pisabarro. "Multipose Binding in Molecular Docking." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-147177.
Pełny tekst źródłaNordesjö, Olle. "Searching for novel protein-protein specificities using a combined approach of sequence co-evolution and local structural equilibration." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-275040.
Pełny tekst źródłaKsiążki na temat "Prediction of binding affinity"
Rastogi, Chaitanya. Accurate and Sensitive Quantification of Protein-DNA Binding Affinity. [publisher not identified], 2017.
Znajdź pełny tekst źródłaNaples, Mark. Determinants of high affinity ligand binding to the group III metabotropic glutamate receptors. National Library of Canada, 2001.
Znajdź pełny tekst źródła1958-, McMahon Robert Joseph, ed. Avidin-biotin interactions: Methods and applications. Humana, 2008.
Znajdź pełny tekst źródłaMarles, Jennifer Anne. Significance of the ligand-binding affinity of the Sho1 SH3 domain for in vivo function. National Library of Canada, 2003.
Znajdź pełny tekst źródła1958-, McMahon Robert Joseph, ed. Avidin-biotin interactions: Methods and applications. Humana, 2008.
Znajdź pełny tekst źródłaMantovaara, Tuula. The use of calcium (II) and cobalt (II) as adsorbents in immobilized metal ion affinity purification. Uppsala University, 1990.
Znajdź pełny tekst źródłaPuvvada, Madhu. Investigation into the relationship between DNA-binding affinity, sequence-specificity and biological activity in the pyrrolo[2,1-c][1,4]benzodiazepine group of antitumour antibiotics. University of Portsmouth, Division of Medicinal Chemistry, 1995.
Znajdź pełny tekst źródłaMarelius, John. Computational Prediction of Receptor-Ligand Binding Affinity in Drug Discovery. Uppsala Universitet, 2000.
Znajdź pełny tekst źródłaVerotoxin-globotriosylceramide binding: Receptor affinity purification and the effect of membrane environment on toxin binding. National Library of Canada, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Prediction of binding affinity"
Takaba, Kenichiro. "Application of FMO for Protein–ligand Binding Affinity Prediction." In Recent Advances of the Fragment Molecular Orbital Method. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9235-5_13.
Pełny tekst źródłaLu, Yaoyao, Junkai Liu, Tengsheng Jiang, Shixuan Guan, and Hongjie Wu. "Protein-Ligand Binding Affinity Prediction Based on Deep Learning." In Intelligent Computing Theories and Application. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13829-4_26.
Pełny tekst źródłaAsha, P. R., and M. S. Vijaya. "Binding Affinity Prediction Models for Spinocerebellar Ataxia Using Supervised Learning." In Communications in Computer and Information Science. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1423-0_17.
Pełny tekst źródłaLiu, Wen, Ji Wan, Xiangshan Meng, Darren R. Flower, and Tongbin Li. "In Silico Prediction of Peptide-MHC Binding Affinity Using SVRMHC." In Methods in Molecular Biology. Humana Press, 2007. http://dx.doi.org/10.1007/978-1-60327-118-9_20.
Pełny tekst źródłaLi, Xueling, Min Zhu, Xiaolai Li, Hong-Qiang Wang, and Shulin Wang. "Protein-Protein Binding Affinity Prediction Based on an SVR Ensemble." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31588-6_19.
Pełny tekst źródłaXie, Zhiqi, Zipeng Fan, Peng Zhang, and Qianxi Lin. "CroMamba-DTA: Cross-Mamba for Drug-Target Binding Affinity Prediction." In Lecture Notes in Computer Science. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-95-0027-7_37.
Pełny tekst źródłaBogdanova, Elizaveta A., Valery N. Novoseletsky, and Konstantin V. Shaitan. "Binding Affinity Prediction in Protein-Protein Complexes Using Convolutional Neural Network." In Advances in Neural Computation, Machine Learning, and Cognitive Research VII. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44865-2_42.
Pełny tekst źródłaNikam, Rahul, K. Yugandhar, and M. Michael Gromiha. "Discrimination and Prediction of Protein-Protein Binding Affinity Using Deep Learning Approach." In Intelligent Computing Theories and Application. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95933-7_89.
Pełny tekst źródłaXia, Minghao, Jing Hu, Xiaolong Zhang, and Xiaoli Lin. "Drug-Target Binding Affinity Prediction Based on Graph Neural Networks and Word2vec." In Intelligent Computing Theories and Application. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13829-4_43.
Pełny tekst źródłaAzzopardi, Joseph, and Jean Paul Ebejer. "LigityScore: A CNN-Based Method for Binding Affinity Predictions." In Biomedical Engineering Systems and Technologies. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20664-1_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Prediction of binding affinity"
Rose, Tyler, Charlotte Zhou, and Nicolò Monti. "AffinityLM: Binding-Site Informed Multitask Language Model for Drug-Target Affinity Prediction." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822722.
Pełny tekst źródłaWu, Yulong, Jin Xie, Jing Nie, Xiaohong Zhang, and Yuansong Zeng. "Mamba-DTA: Drug-Target Binding Affinity Prediction with State Space Model." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822594.
Pełny tekst źródłaTu, Xinyi, Zhe Li, and Wenbin Lin. "SE-DTA: A Spatial Equivariant Network for Drug-Target Binding Affinity Prediction." In 2024 9th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, 2024. http://dx.doi.org/10.1109/icsp62122.2024.10743565.
Pełny tekst źródłaWu, Yulong, Jin Xie, Jing Nie, Jian Hu, and Yuansong Zeng. "Dual Interaction and Kernel-Diverse Network for Accurate Drug-Target Binding Affinity Prediction." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822466.
Pełny tekst źródłaPrasika, L., Karish Prajaishma G R, and Yoga Vardhani M. "Improved Molecular Binding Affinity Prediction using Deep Learning through Integration of Chemical Structure." In 2024 International Conference on Control, Computing, Communication and Materials (ICCCCM). IEEE, 2024. https://doi.org/10.1109/iccccm61016.2024.11039915.
Pełny tekst źródłaZheng, Jiangbin, Qianhui Xu, Ruichen Xia, and Stan Z. Li. "DapPep: Domain Adaptive Peptide-agnostic Learning for Universal T-cell Receptor-antigen Binding Affinity Prediction." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10888436.
Pełny tekst źródłaSeo, Sangmin, Seungyeon Choi, Hwanhee Kim, and Sanghyun Park. "PretrainedBA: Enhancing Compound-Protein Binding Affinity Prediction Accuracy via Pre-training Large-Scale Interaction Information." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821938.
Pełny tekst źródłaSong, Tao, Siyu Zhang, Xiangyu Meng, Zeyang Zhu, Xianxi Zhu, and Xun Wang. "DCUI-MGraphDTA: Enabling Efficient Inference of a Drug-Target Binding Affinity Prediction Model on DCUs." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821809.
Pełny tekst źródłaLv, Xing, Weizhong Zhao, Xinhui Tu, and Tingting He. "Predicting Protein-ligand Binding Affinity via Molecular Mechanics-guided Graph Aggregation." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822564.
Pełny tekst źródłaLi, Huiting, Weiyu Zhang, Yong Shang, and Wenpeng Lu. "MBC-DTA: A Multi-Scale Bilinear Attention with Contrastive Learning Framework for Drug-Target Binding Affinity Prediction." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822403.
Pełny tekst źródłaRaporty organizacyjne na temat "Prediction of binding affinity"
Warren, H. S. Purification of LPS Binding Factors in Tolerant Serum by Affinity Chromatography. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada233638.
Pełny tekst źródłaReiff, Emily A., and Gunda I. Georg. Construction of Affinity Probes to Study the Epothilone Binding Site on Tubulin. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada416670.
Pełny tekst źródłaStratis-Cullum, Dimitra N., Sun McMasters, and Paul M. Pellegrino. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada512469.
Pełny tekst źródłaFresco, Jacques R. Development of affinity technology for isolating individual human chromosomes by third strand binding. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/820632.
Pełny tekst źródłaPattabiraman, Nagarajan, Carolyn Chambers, Ayesha Adil, and Gregory E. Garcia. Identification of Small Molecules against Botulinum Neurotoxin B Binding to Neuronal Cells at Ganglioside GT1b Binding Site with Low to Moderate Affinity. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada612876.
Pełny tekst źródłaChefetz, Benny, Baoshan Xing, and Yona Chen. Interactions of engineered nanoparticles with dissolved organic matter (DOM) and organic contaminants in water. United States Department of Agriculture, 2013. http://dx.doi.org/10.32747/2013.7699863.bard.
Pełny tekst źródłaCrocker, Fiona, Lyndsay Carrigee, Kayla Clark, and Karl Indest. Peptide display for rare earth element binding. Engineer Research and Development Center (U.S.), 2025. https://doi.org/10.21079/11681/49647.
Pełny tekst źródłaHonzatko, Richard, Scott Nelson, Manvi Kapur, Shatabdi Sen та Olivia Gray. Structural Basis for Differential Affinity and Competitive Binding of DNA Polymerase Peptides to the Mycobacterial β-Clamp. ResearchHub Technologies, Inc., 2025. https://doi.org/10.55277/researchhub.ol79cdw8.1.
Pełny tekst źródłaHonzatko, Richard, Scott Nelson, Manvi Kapur, Shatabdi Sen та Olivia Gray. Structural Basis for Differential Affinity and Competitive Binding of DNA Polymerase Peptides to the Mycobacterial β-Clamp. ResearchHub Technologies, Inc., 2025. https://doi.org/10.55277/rhj.cqzht3xe.2.
Pełny tekst źródłaNelson, Scott, Manvi Kapur, Olivia J. Gray, Richard B. Honzatko та Shatabdi Sen. Structural Basis for Differential Affinity and Competitive Binding of DNA Polymerase Peptides to the Mycobacterial β-Clamp. ResearchHub Technologies, Inc., 2025. https://doi.org/10.55277/rhj.cqzht3xe.1.
Pełny tekst źródła