Artykuły w czasopismach na temat „Prediction of binding affinity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Prediction of binding affinity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Debby D., Haoran Xie, and Hong Yan. "Proteo-chemometrics interaction fingerprints of protein–ligand complexes predict binding affinity." Bioinformatics 37, no. 17 (2021): 2570–79. http://dx.doi.org/10.1093/bioinformatics/btab132.
Pełny tekst źródłaKondabala, Rajesh, Vijay Kumar, Amjad Ali, and Manjit Kaur. "A novel astrophysics-based framework for prediction of binding affinity of glucose binder." Modern Physics Letters B 34, no. 31 (2020): 2050346. http://dx.doi.org/10.1142/s0217984920503467.
Pełny tekst źródłaAntunes, Dinler A., Jayvee R. Abella, Didier Devaurs, Maurício M. Rigo, and Lydia E. Kavraki. "Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes." Current Topics in Medicinal Chemistry 18, no. 26 (2019): 2239–55. http://dx.doi.org/10.2174/1568026619666181224101744.
Pełny tekst źródłaKwon, Yongbeom, Woong-Hee Shin, Junsu Ko, and Juyong Lee. "AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks." International Journal of Molecular Sciences 21, no. 22 (2020): 8424. http://dx.doi.org/10.3390/ijms21228424.
Pełny tekst źródłaShar, Piar Ali, Weiyang Tao, Shuo Gao, et al. "Pred-binding: large-scale protein–ligand binding affinity prediction." Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. 6 (2016): 1443–50. http://dx.doi.org/10.3109/14756366.2016.1144594.
Pełny tekst źródłaNguyen, Austin, Abhinav Nellore, and Reid F. Thompson. "Discordant results among major histocompatibility complex binding affinity prediction tools." F1000Research 12 (June 7, 2023): 617. http://dx.doi.org/10.12688/f1000research.132538.1.
Pełny tekst źródłaLangham, James J., Ann E. Cleves, Russell Spitzer, Daniel Kirshner, and Ajay N. Jain. "Physical Binding Pocket Induction for Affinity Prediction." Journal of Medicinal Chemistry 52, no. 19 (2009): 6107–25. http://dx.doi.org/10.1021/jm901096y.
Pełny tekst źródłaÖztürk, Hakime, Arzucan Özgür, and Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34, no. 17 (2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Pełny tekst źródłaWang, Xun, Dayan Liu, Jinfu Zhu, Alfonso Rodriguez-Paton, and Tao Song. "CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction." Biomolecules 11, no. 5 (2021): 643. http://dx.doi.org/10.3390/biom11050643.
Pełny tekst źródłaPantsar, Tatu, and Antti Poso. "Binding Affinity via Docking: Fact and Fiction." Molecules 23, no. 8 (2018): 1899. http://dx.doi.org/10.3390/molecules23081899.
Pełny tekst źródłaKappel, Kalli, Inga Jarmoskaite, Pavanapuresan P. Vaidyanathan, William J. Greenleaf, Daniel Herschlag, and Rhiju Das. "Blind tests of RNA–protein binding affinity prediction." Proceedings of the National Academy of Sciences 116, no. 17 (2019): 8336–41. http://dx.doi.org/10.1073/pnas.1819047116.
Pełny tekst źródłaKim, Ryangguk, and Jeffrey Skolnick. "Assessment of programs for ligand binding affinity prediction." Journal of Computational Chemistry 29, no. 8 (2008): 1316–31. http://dx.doi.org/10.1002/jcc.20893.
Pełny tekst źródłaMarshall, K. W., K. J. Wilson, J. Liang, A. Woods, D. Zaller, and J. B. Rothbard. "Prediction of peptide affinity to HLA DRB1*0401." Journal of Immunology 154, no. 11 (1995): 5927–33. http://dx.doi.org/10.4049/jimmunol.154.11.5927.
Pełny tekst źródłaGim, Mogan, Junseok Choe, Seungheun Baek, et al. "ArkDTA: attention regularization guided by non-covalent interactions for explainable drug–target binding affinity prediction." Bioinformatics 39, Supplement_1 (2023): i448—i457. http://dx.doi.org/10.1093/bioinformatics/btad207.
Pełny tekst źródłaWalpoth, Belinda Nazan, and Burak Erman. "Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations." F1000Research 4 (January 28, 2015): 29. http://dx.doi.org/10.12688/f1000research.5858.1.
Pełny tekst źródłaHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Pełny tekst źródłaLimbu, Sarita, and Sivanesan Dakshanamurthy. "A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design." International Journal of Molecular Sciences 23, no. 22 (2022): 13912. http://dx.doi.org/10.3390/ijms232213912.
Pełny tekst źródłaOUYANG, XUCHANG, STEPHANUS DANIEL HANDOKO, and CHEE KEONG KWOH. "CSCORE: A SIMPLE YET EFFECTIVE SCORING FUNCTION FOR PROTEIN–LIGAND BINDING AFFINITY PREDICTION USING MODIFIED CMAC LEARNING ARCHITECTURE." Journal of Bioinformatics and Computational Biology 09, supp01 (2011): 1–14. http://dx.doi.org/10.1142/s021972001100577x.
Pełny tekst źródłaPandey, Mohit, Mariia Radaeva, Hazem Mslati, et al. "Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks." Molecules 27, no. 16 (2022): 5114. http://dx.doi.org/10.3390/molecules27165114.
Pełny tekst źródłaKalemati, Mahmood, Mojtaba Zamani Emani, and Somayyeh Koohi. "BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach." PLOS Computational Biology 19, no. 3 (2023): e1011036. http://dx.doi.org/10.1371/journal.pcbi.1011036.
Pełny tekst źródłaUsha, Singaravelu, and Samuel Selvaraj. "Prediction of kinase-inhibitor binding affinity using energetic parameters." Bioinformation 12, no. 3 (2016): 172–81. http://dx.doi.org/10.6026/97320630012172.
Pełny tekst źródłaDas, Sourav, Michael P. Krein, and Curt M. Breneman. "Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures." Journal of Chemical Information and Modeling 50, no. 2 (2010): 298–308. http://dx.doi.org/10.1021/ci9004139.
Pełny tekst źródłaYugandhar, K., and M. Michael Gromiha. "Protein–protein binding affinity prediction from amino acid sequence." Bioinformatics 30, no. 24 (2014): 3583–89. http://dx.doi.org/10.1093/bioinformatics/btu580.
Pełny tekst źródłaO'Donnell, Timothy J., Alex Rubinsteyn, Maria Bonsack, Angelika B. Riemer, Uri Laserson, and Jeff Hammerbacher. "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction." Cell Systems 7, no. 1 (2018): 129–32. http://dx.doi.org/10.1016/j.cels.2018.05.014.
Pełny tekst źródłaFan, Cong, Ping-pui Wong, and Huiying Zhao. "DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction." Journal of Chemical Information and Modeling 60, no. 1 (2019): 400–409. http://dx.doi.org/10.1021/acs.jcim.9b00717.
Pełny tekst źródłaChen, Zihao, Long Hu, Bao-Ting Zhang, et al. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Pełny tekst źródłaZeng, Haoyang, and David K. Gifford. "DeepLigand: accurate prediction of MHC class I ligands using peptide embedding." Bioinformatics 35, no. 14 (2019): i278—i283. http://dx.doi.org/10.1093/bioinformatics/btz330.
Pełny tekst źródłaLi, Min, Zhangli Lu, Yifan Wu, and YaoHang Li. "BACPI: a bi-directional attention neural network for compound–protein interaction and binding affinity prediction." Bioinformatics 38, no. 7 (2022): 1995–2002. http://dx.doi.org/10.1093/bioinformatics/btac035.
Pełny tekst źródłaBae, Haelee, and Hojung Nam. "GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity." Biomedicines 11, no. 1 (2022): 67. http://dx.doi.org/10.3390/biomedicines11010067.
Pełny tekst źródłaZhang, Xianfeng, Yanhui Gu, Guandong Xu, Yafei Li, Jinlan Wang, and Zhenglu Yang. "HaPPy: Harnessing the Wisdom from Multi-Perspective Graphs for Protein-Ligand Binding Affinity Prediction (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 16384–85. http://dx.doi.org/10.1609/aaai.v37i13.27052.
Pełny tekst źródłaAnnala, Matti, Kirsti Laurila, Harri Lähdesmäki, and Matti Nykter. "A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays." PLoS ONE 6, no. 5 (2011): e20059. http://dx.doi.org/10.1371/journal.pone.0020059.
Pełny tekst źródłaZhao, Huiying, Yuedong Yang, Mark von Itzstein, and Yaoqi Zhou. "Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction." Journal of Computational Chemistry 35, no. 30 (2014): 2177–83. http://dx.doi.org/10.1002/jcc.23730.
Pełny tekst źródłaStrack, Rita. "Predicting RNA–protein binding affinity." Nature Methods 16, no. 6 (2019): 460. http://dx.doi.org/10.1038/s41592-019-0445-4.
Pełny tekst źródłaGhimire, Ashutosh, Hilal Tayara, Zhenyu Xuan, and Kil To Chong. "CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention." International Journal of Molecular Sciences 23, no. 15 (2022): 8453. http://dx.doi.org/10.3390/ijms23158453.
Pełny tekst źródłaWang, Debby D., Moon-Tong Chan, and Hong Yan. "Structure-based protein–ligand interaction fingerprints for binding affinity prediction." Computational and Structural Biotechnology Journal 19 (2021): 6291–300. http://dx.doi.org/10.1016/j.csbj.2021.11.018.
Pełny tekst źródłaHanai, Toshihiko, A. Koseki, R. Yoshikawa, M. Ueno, T. Kinoshita, and H. Homma. "Prediction of human serum albumin–drug binding affinity without albumin." Analytica Chimica Acta 454, no. 1 (2002): 101–8. http://dx.doi.org/10.1016/s0003-2670(01)01515-x.
Pełny tekst źródłaZhu, Fangqiang, Xiaohua Zhang, Jonathan E. Allen, Derek Jones, and Felice C. Lightstone. "Binding Affinity Prediction by Pairwise Function Based on Neural Network." Journal of Chemical Information and Modeling 60, no. 6 (2020): 2766–72. http://dx.doi.org/10.1021/acs.jcim.0c00026.
Pełny tekst źródłaRizzi, Andrea, Steven Murkli, John N. McNeill, et al. "Overview of the SAMPL6 host–guest binding affinity prediction challenge." Journal of Computer-Aided Molecular Design 32, no. 10 (2018): 937–63. http://dx.doi.org/10.1007/s10822-018-0170-6.
Pełny tekst źródłaSuri, Sadhana, and Sivanesan Dakshanamurthy. "IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method." Vaccines 10, no. 10 (2022): 1678. http://dx.doi.org/10.3390/vaccines10101678.
Pełny tekst źródłaSharabi, Oz, Jason Shirian, and Julia M. Shifman. "Predicting affinity- and specificity-enhancing mutations at protein–protein interfaces." Biochemical Society Transactions 41, no. 5 (2013): 1166–69. http://dx.doi.org/10.1042/bst20130121.
Pełny tekst źródłaLiang, Yigao, Shaohua Jiang, Min Gao, Fengjiao Jia, Zaoyang Wu, and Zhijian Lyu. "GLSTM-DTA: Application of Prediction Improvement Model Based on GNN and LSTM." Journal of Physics: Conference Series 2219, no. 1 (2022): 012008. http://dx.doi.org/10.1088/1742-6596/2219/1/012008.
Pełny tekst źródłaZhao, Huiying, Yuedong Yang, and Yaoqi Zhou. "Highly accurate and high-resolution function prediction of RNA binding proteins by fold recognition and binding affinity prediction." RNA Biology 8, no. 6 (2011): 988–96. http://dx.doi.org/10.4161/rna.8.6.17813.
Pełny tekst źródłaFeng, Peiyuan, Jianyang Zeng, and Jianzhu Ma. "Predicting MHC-peptide binding affinity by differential boundary tree." Bioinformatics 37, Supplement_1 (2021): i254—i261. http://dx.doi.org/10.1093/bioinformatics/btab312.
Pełny tekst źródłaFedyushkina, I. V., V. S. Skvortsov, I. V. Romero Reyes, and I. S. Levina. "Molecular docking and 3D-QSAR on 16a,17a-cycloalkanoprogesterone analogues as progesterone receptor ligands." Biomeditsinskaya Khimiya 59, no. 6 (2013): 622–35. http://dx.doi.org/10.18097/pbmc20135906622.
Pełny tekst źródłaMoshari, Mahshad, Qian Wang, Marek Michalak, Mariusz Klobukowski, and Jack Adam Tuszynski. "Computational Prediction and Experimental Validation of the Unique Molecular Mode of Action of Scoulerine." Molecules 27, no. 13 (2022): 3991. http://dx.doi.org/10.3390/molecules27133991.
Pełny tekst źródłaLiu, Yang, Xia-hui Ouyang, Zhi-Xiong Xiao, Le Zhang, and Yang Cao. "A Review on the Methods of Peptide-MHC Binding Prediction." Current Bioinformatics 15, no. 8 (2021): 878–88. http://dx.doi.org/10.2174/1574893615999200429122801.
Pełny tekst źródłaLi, Zhongyan, Qingqing Miao, Fugang Yan, Yang Meng, and Peng Zhou. "Machine Learning in Quantitative Protein–peptide Affinity Prediction: Implications for Therapeutic Peptide Design." Current Drug Metabolism 20, no. 3 (2019): 170–76. http://dx.doi.org/10.2174/1389200219666181012151944.
Pełny tekst źródłaAgostino, Mark, and Sebastian Öther-Gee Pohl. "Wnt Binding Affinity Prediction for Putative Frizzled-Type Cysteine-Rich Domains." International Journal of Molecular Sciences 20, no. 17 (2019): 4168. http://dx.doi.org/10.3390/ijms20174168.
Pełny tekst źródłaYuan, Hong, Jing Huang, and Jin Li. "Protein-ligand binding affinity prediction model based on graph attention network." Mathematical Biosciences and Engineering 18, no. 6 (2021): 9148–62. http://dx.doi.org/10.3934/mbe.2021451.
Pełny tekst źródłaAgrawal, Piyush, Pawan Kumar Raghav, Sherry Bhalla, Neelam Sharma, and Gajendra P. S. Raghava. "Overview of Free Software Developed for Designing Drugs Based on Protein-Small Molecules Interaction." Current Topics in Medicinal Chemistry 18, no. 13 (2018): 1146–67. http://dx.doi.org/10.2174/1568026618666180816155131.
Pełny tekst źródła