Gotowa bibliografia na temat „Predictive uncertainty quantification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Predictive uncertainty quantification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Predictive uncertainty quantification"
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems." Energies 15, no. 17 (2022): 6379. http://dx.doi.org/10.3390/en15176379.
Pełny tekst źródłaCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, et al. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Pełny tekst źródłaLew, Jiann-Shiun, and Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification." Journal of Guidance, Control, and Dynamics 35, no. 3 (2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Pełny tekst źródłaKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Pełny tekst źródłaSerenko, I. A., Y. V. Dorn, S. R. Singh, and A. V. Kornaev. "Room for Uncertainty in Remaining Useful Life Estimation for Turbofan Jet Engines." Nelineinaya Dinamika 20, no. 5 (2024): 933–43. https://doi.org/10.20537/nd241218.
Pełny tekst źródłaAkitaya, Kento, and Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)." Water 16, no. 3 (2024): 423. http://dx.doi.org/10.3390/w16030423.
Pełny tekst źródłaSriprasert, Soraida, and Patchanok Srisuradetchai. "Multi-K KNN regression with bootstrap aggregation: Accurate predictions and alternative prediction intervals." Edelweiss Applied Science and Technology 9, no. 5 (2025): 2750–64. https://doi.org/10.55214/25768484.v9i5.7589.
Pełny tekst źródłaChala, Ayele Tesema, and Richard Ray. "Uncertainty Quantification in Shear Wave Velocity Predictions: Integrating Explainable Machine Learning and Bayesian Inference." Applied Sciences 15, no. 3 (2025): 1409. https://doi.org/10.3390/app15031409.
Pełny tekst źródłaAyed, Safa Ben, Roozbeh Sadeghian Broujeny, and Rachid Tahar Hamza. "Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning." Journal of Artificial Intelligence and Soft Computing Research 15, no. 1 (2024): 37–55. https://doi.org/10.2478/jaiscr-2025-0003.
Pełny tekst źródłaPlesner, Andreas, Allan P. Engsig-Karup, and Hans True. "Detecting Railway Track Irregularities with Data-driven Uncertainty Quantification." Highlights of Vehicles 3, no. 1 (2025): 1–14. https://doi.org/10.54175/hveh3010001.
Pełny tekst źródłaRozprawy doktorskie na temat "Predictive uncertainty quantification"
Lonsdale, Jack Henry. "Predictive modelling and uncertainty quantification of UK forest growth." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16202.
Pełny tekst źródłaGligorijevic, Djordje. "Predictive Uncertainty Quantification and Explainable Machine Learning in Healthcare." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/520057.
Pełny tekst źródłaZaffran, Margaux. "Post-hoc predictive uncertainty quantification : methods with applications to electricity price forecasting." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX033.
Pełny tekst źródłaRiley, Matthew E. "Quantification of Model-Form, Predictive, and Parametric Uncertainties in Simulation-Based Design." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1314895435.
Pełny tekst źródłaFreeman, Jacob Andrew. "Optimization Under Uncertainty and Total Predictive Uncertainty for a Tractor-Trailer Base-Drag Reduction Device." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77168.
Pełny tekst źródłaWu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Pełny tekst źródłaCortesi, Andrea Francesco. "Predictive numerical simulations for rebuilding freestream conditions in atmospheric entry flows." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0021/document.
Pełny tekst źródłaErbas, Demet. "Sampling strategies for uncertainty quantification in oil recovery prediction." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/70.
Pełny tekst źródłaWhiting, Nolan Wagner. "Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91903.
Pełny tekst źródłaPhadnis, Akash. "Uncertainty quantification and prediction for non-autonomous linear and nonlinear systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85476.
Pełny tekst źródłaKsiążki na temat "Predictive uncertainty quantification"
McClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0.
Pełny tekst źródłaEva, Boegh, and International Association of Hydrological Sciences., eds. Quantification and reduction of predictive uncertainty for sustainable water resources management: Proceedings of an international symposium [held] during IUGG2007, the XXIV General Assembly of the International Union of Geodesy and Geophysics at Perugia, Italy, July 2007. International Association of Hydrological Sciences, 2007.
Znajdź pełny tekst źródłaHarrington, Matthew R. Predicting and Understanding the Presence of Water through Remote Sensing, Machine Learning, and Uncertainty Quantification. [publisher not identified], 2022.
Znajdź pełny tekst źródłaHemez, François, and Sez Atamturktur. Predictive Modelling: Verification, Validation and Uncertainty Quantification. Wiley & Sons, Limited, John, 2018.
Znajdź pełny tekst źródłaMcClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers. Springer, 2018.
Znajdź pełny tekst źródłaAnderson, Mark, Francois Hemez, and Scott Doebling. Model Verification and Validation in Engineering Mechanics: Theory and Applications of Uncertainty Quantification and Predictive Accuracy. John Wiley & Sons, 2005.
Znajdź pełny tekst źródłaModel Verification and Validation in Engineering Mechanics: Theory and Applications of Uncertainty Quantification and Predictive Accuracy. Wiley & Sons, Limited, John, 2004.
Znajdź pełny tekst źródłaSanderson, Benjamin Mark. Uncertainty Quantification in Multi-Model Ensembles. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.707.
Pełny tekst źródłaChen, Nan. Stochastic Methods for Modeling and Predicting Complex Dynamical Systems: Uncertainty Quantification, State Estimation, and Reduced-Order Models. Springer International Publishing AG, 2023.
Znajdź pełny tekst źródłaCzęści książek na temat "Predictive uncertainty quantification"
Svensson, Emma, Hannah Rosa Friesacher, Adam Arany, Lewis Mervin, and Ola Engkvist. "Temporal Evaluation of Uncertainty Quantification Under Distribution Shift." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72381-0_11.
Pełny tekst źródłaMcClarren, Ryan G. "Introduction to Uncertainty Quantification and Predictive Science." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_1.
Pełny tekst źródłaMcClarren, Ryan G. "Gaussian Process Emulators and Surrogate Models." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_10.
Pełny tekst źródłaMcClarren, Ryan G. "Predictive Models Informed by Simulation, Measurement, and Surrogates." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_11.
Pełny tekst źródłaMcClarren, Ryan G. "Epistemic Uncertainties: Dealing with a Lack of Knowledge." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_12.
Pełny tekst źródłaMcClarren, Ryan G. "Probability and Statistics Preliminaries." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_2.
Pełny tekst źródłaMcClarren, Ryan G. "Input Parameter Distributions." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_3.
Pełny tekst źródłaMcClarren, Ryan G. "Local Sensitivity Analysis Based on Derivative Approximations." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_4.
Pełny tekst źródłaMcClarren, Ryan G. "Regression Approximations to Estimate Sensitivities." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_5.
Pełny tekst źródłaMcClarren, Ryan G. "Adjoint-Based Local Sensitivity Analysis." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Predictive uncertainty quantification"
Mossina, Luca, Joseba Dalmau, and Léo Andéol. "Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00361.
Pełny tekst źródłaPark, Seong-Ho, Hong Je-Gal, and Hyun-Suk Lee. "A Novel Data-Driven Soft Sensor in Metaverse Provisioning Predictive Credibility Based on Uncertainty Quantification." In 2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom). IEEE, 2024. http://dx.doi.org/10.1109/metacom62920.2024.00053.
Pełny tekst źródłaDuan, Jinhao, Hao Cheng, Shiqi Wang, et al. "Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models." In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.276.
Pełny tekst źródłaDehon, Victor, Paulina Quintanilla, and Antonio Del Rio Chanona. "Probabilistic Model Predictive Control for Mineral Flotation using Gaussian Processes." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.122018.
Pełny tekst źródłaBerthier, Louis, Ahmed Shokry, Eric Moulines, Guillaume Ramelet, and Sylvain Desroziers. "Knowledge Discovery in Large-Scale Batch Processes through Explainable Boosted Models and Uncertainty Quantification: Application to Rubber Mixing." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.183525.
Pełny tekst źródłaJiet, Moses Makuei, Prateek Verma, Aahash Kamble, and Chetan Puri. "A Review on Bayesian Methods for Uncertainty Quantification in Machine Learning Models Enhancing Predictive Accuracy and Model Interpretability." In 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI). IEEE, 2024. http://dx.doi.org/10.1109/icoici62503.2024.10696308.
Pełny tekst źródłaDekhici, Benaissa, and Michael Short. "Data-Driven Modelling of Biogas Production Using Multi-Task Gaussian Processes." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.121877.
Pełny tekst źródłaZhou, Hao, Yanze Zhang, and Wenhao Luo. "Safety-Critical Control with Uncertainty Quantification using Adaptive Conformal Prediction." In 2024 American Control Conference (ACC). IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644391.
Pełny tekst źródłaGrewal, Ruben, Paolo Tonella, and Andrea Stocco. "Predicting Safety Misbehaviours in Autonomous Driving Systems Using Uncertainty Quantification." In 2024 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, 2024. http://dx.doi.org/10.1109/icst60714.2024.00016.
Pełny tekst źródłaNeumeier, Marion, Sebastian Dorn, Michael Botsch, and Wolfgang Utschick. "Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00350.
Pełny tekst źródłaRaporty organizacyjne na temat "Predictive uncertainty quantification"
Adams, Marvin. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1364745.
Pełny tekst źródłaFavorite, Jeffrey A., Garrett James Dean, Keith C. Bledsoe, et al. Predictive Modeling, Inverse Problems, and Uncertainty Quantification with Application to Emergency Response. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1432629.
Pełny tekst źródłaLawson, Matthew, Bert J. Debusschere, Habib N. Najm, Khachik Sargsyan, and Jonathan H. Frank. Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1011617.
Pełny tekst źródłaYe, Ming. Computational Bayesian Framework for Quantification and Reduction of Predictive Uncertainty in Subsurface Environmental Modeling. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1491235.
Pełny tekst źródłaMarzouk, Youssef. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1312896.
Pełny tekst źródłaCattaneo, Matias D., Richard K. Crump, and Weining Wang. Beta-Sorted Portfolios. Federal Reserve Bank of New York, 2023. http://dx.doi.org/10.59576/sr.1068.
Pełny tekst źródłaGonzales, Lindsey M., Thomas M. Hall, Kendra L. Van Buren, Steven R. Anton, and Francois M. Hemez. Quantification of Prediction Bounds Caused by Model Form Uncertainty. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1095195.
Pełny tekst źródłaAdams, Jason, Brandon Berman, Joshua Michalenko, and Rina Deka. Non-conformity Scores for High-Quality Uncertainty Quantification from Conformal Prediction. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2430248.
Pełny tekst źródłaVecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond, and Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/45300.
Pełny tekst źródłaGlimm, James, Yunha Lee, Kenny Q. Ye, and David H. Sharp. Prediction Using Numerical Simulations, A Bayesian Framework for Uncertainty Quantification and its Statistical Challenge. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada417842.
Pełny tekst źródła