Artykuły w czasopismach na temat „Price directional forecasting”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Price directional forecasting”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Shiying, and Xinyu Yao. "The performance analysis of stock predication based on recurrent neural network." Applied and Computational Engineering 6, no. 1 (2023): 1276–82. http://dx.doi.org/10.54254/2755-2721/6/20230696.
Pełny tekst źródłaLi, Jin. "Integrative forecasting and analysis of stock price using neural network and ARIMA model." Applied and Computational Engineering 6, no. 1 (2023): 969–81. http://dx.doi.org/10.54254/2755-2721/6/20230531.
Pełny tekst źródłaBalasubramanian, Dr Kannan. "Securing BitCoin Price Prediction using the LSTM Machine Learning Model." Indian Journal of Economics and Finance 4, no. 2 (2024): 68–72. http://dx.doi.org/10.54105/ijef.b1429.04021124.
Pełny tekst źródłaDr., Kannan Balasubramanian. "Securing BitCoin Price Prediction using the LSTM Machine Learning Model." Indian Journal of Economics and Finance (IJEF) 4, no. 2 (2024): 68–72. https://doi.org/10.54105/ijef.B1429.04021124.
Pełny tekst źródłaIrlapale, Pranav Kishor. "Elevating Cryptocurrency Predictions: Bidirectional LSTM Methodology." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem34330.
Pełny tekst źródłaBaumeister, Christiane, Lutz Kilian, and Xiaoqing Zhou. "ARE PRODUCT SPREADS USEFUL FOR FORECASTING OIL PRICES? AN EMPIRICAL EVALUATION OF THE VERLEGER HYPOTHESIS." Macroeconomic Dynamics 22, no. 3 (2017): 562–80. http://dx.doi.org/10.1017/s1365100516000237.
Pełny tekst źródłaLiu, Juan, Wei Huang, and Pingping Kong. "Deep Learning and Variational Modal Decomposition in Stock Price Prediction." Scientific Journal of Economics and Management Research 6, no. 12 (2024): 211–20. https://doi.org/10.54691/wf3sbh45.
Pełny tekst źródłaMacKinnon, Douglas, and Martin Pavlovič. "A Bayesian analysis of hop price fluctuations." Agricultural Economics (Zemědělská ekonomika) 66, No. 12 (2020): 519–26. http://dx.doi.org/10.17221/239/2020-agricecon.
Pełny tekst źródłaWang, Xinyu, Kegui Chen, and Xueping Tan. "Forecasting the Direction of Short-Term Crude Oil Price Changes with Genetic-Fuzzy Information Distribution." Mathematical Problems in Engineering 2018 (December 5, 2018): 1–12. http://dx.doi.org/10.1155/2018/3868923.
Pełny tekst źródłaRaut, Supriya. "Analysis & Stock Price Prediction and Forecasting Using Different LSTM Models." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 04 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem30115.
Pełny tekst źródłaSeabe, Phumudzo Lloyd, Claude Rodrigue Bambe Moutsinga, and Edson Pindza. "Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach." Fractal and Fractional 7, no. 2 (2023): 203. http://dx.doi.org/10.3390/fractalfract7020203.
Pełny tekst źródłaLivieris, Ioannis E., Emmanuel Pintelas, Stavros Stavroyiannis, and Panagiotis Pintelas. "Ensemble Deep Learning Models for Forecasting Cryptocurrency Time-Series." Algorithms 13, no. 5 (2020): 121. http://dx.doi.org/10.3390/a13050121.
Pełny tekst źródłaLi, Taiyong, Zhenda Hu, Yanchi Jia, Jiang Wu, and Yingrui Zhou. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning." Energies 11, no. 7 (2018): 1882. http://dx.doi.org/10.3390/en11071882.
Pełny tekst źródłaChen, Zhiyang. "Stock Price Prediction with Denoising Autoencoder and Transformers." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 803–10. http://dx.doi.org/10.54097/1skct023.
Pełny tekst źródłaMajid, Muhammad Althaf, Prilyandari Dina Saputri, and Soehardjoepri Soehardjoepri. "Stock Market Index Prediction using Bi-directional Long Short-Term Memory." Journal of Applied Informatics and Computing 8, no. 1 (2024): 55–61. http://dx.doi.org/10.30871/jaic.v8i1.7195.
Pełny tekst źródłaDhivya, R., M. Prahadeeswaran, R. Parimalaragan, C. Thangamani, and S. Kavitha. "Commodity Future Trading and Cointegration of Turmeric Markets in India." Asian Journal of Agricultural Extension, Economics & Sociology 41, no. 9 (2023): 190–99. http://dx.doi.org/10.9734/ajaees/2023/v41i92031.
Pełny tekst źródłaVallarino, Diego. "An AI-Enhanced Forecasting Framework: Integrating LSTM and Transformer-Based Sentiment for Stock Price Prediction." Journal of Economic Analysis 4, no. 3 (2025): 1–15. https://doi.org/10.58567/jea04030001.
Pełny tekst źródłaStádník, Bohumil. "Market Price Forecasting and Profitability – How to Tame Mrandom Walk?" Business: Theory and Practice 14, no. (2) (2013): 166–76. https://doi.org/10.3846/btp.2013.18.
Pełny tekst źródłaOcran, Matthew. "South Africa and United States stock prices and the Rand/Dollar exchange rate." South African Journal of Economic and Management Sciences 13, no. 3 (2010): 362–75. http://dx.doi.org/10.4102/sajems.v13i3.106.
Pełny tekst źródłaSenanayaka, N. I. M. B., and H. A. Pathberiya. "Effectiveness of Using Candlestick Charts to Forecast Ethereum Price Direction: A Machine Learning Approach." Sri Lankan Journal of Applied Statistics 25, no. 1 (2024): 34–48. http://dx.doi.org/10.4038/sljas.v25i1.8131.
Pełny tekst źródłaYan, Haoyang. "Research on Gold Price Prediction Based on LSTM Modeling." Advances in Economics, Management and Political Sciences 94, no. 1 (2024): 202–10. http://dx.doi.org/10.54254/2754-1169/94/2024ox0166.
Pełny tekst źródłaXIONG, TAO, YUKUN BAO, ZHONGYI HU, RUI ZHANG, and JINLONG ZHANG. "HYBRID DECOMPOSITION AND ENSEMBLE FRAMEWORK FOR STOCK PRICE FORECASTING: A COMPARATIVE STUDY." Advances in Adaptive Data Analysis 03, no. 04 (2011): 447–82. http://dx.doi.org/10.1142/s1793536911000878.
Pełny tekst źródłaKumari, Prity, Viniya Goswami, Harshith N., and R. S. Pundir. "Recurrent neural network architecture for forecasting banana prices in Gujarat, India." PLOS ONE 18, no. 6 (2023): e0275702. http://dx.doi.org/10.1371/journal.pone.0275702.
Pełny tekst źródłaWu, Jiang, Yu Chen, Tengfei Zhou, and Taiyong Li. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting." Energies 12, no. 7 (2019): 1239. http://dx.doi.org/10.3390/en12071239.
Pełny tekst źródłaZou, Yiyang. "Forecasting Apple Inc. Stock prices: A comparative analysis of ARIMA, LSTM, and ARIMA-LSTM models." Advances in Operation Research and Production Management 4, no. 1 (2025): None. https://doi.org/10.54254/3029-0880/2025.23870.
Pełny tekst źródłaZhang, Jilin, Lishi Ye, and Yongzeng Lai. "Stock Price Prediction Using CNN-BiLSTM-Attention Model." Mathematics 11, no. 9 (2023): 1985. http://dx.doi.org/10.3390/math11091985.
Pełny tekst źródłaLi, Jianyao. "A Comparative Study of LSTM Variants in Prediction for Tesla’s Stock Price." BCP Business & Management 34 (December 14, 2022): 30–38. http://dx.doi.org/10.54691/bcpbm.v34i.2861.
Pełny tekst źródłaMoazzen, Farid, and M. J. Hossain. "Multivariate Deep Learning Long Short-Term Memory-Based Forecasting for Microgrid Energy Management Systems." Energies 17, no. 17 (2024): 4360. http://dx.doi.org/10.3390/en17174360.
Pełny tekst źródłaStádník, Bohumil. "The Riddle of Volatility Clusters." Business: Theory and Practice 15, no. (2) (2014): 140–48. https://doi.org/10.3846/btp.2014.14.
Pełny tekst źródłaEz-zaiym, Mustapha, Yassine Senhaji, Meriem Rachid, Karim El Moutaouakil, and Vasile Palade. "Fractional Optimizers for LSTM Networks in Financial Time Series Forecasting." Mathematics 13, no. 13 (2025): 2068. https://doi.org/10.3390/math13132068.
Pełny tekst źródłaHadizadeh, Anita, Mohammad Jafar Tarokh, and Majid Mirzaee Ghazani. "A convolutional deep reinforcement learning architecture for an emerging stock market analysis." Decision Science Letters 14, no. 2 (2025): 313–26. https://doi.org/10.5267/j.dsl.2025.1.006.
Pełny tekst źródłaKim, Eunsol, and Jaegi Jeon. "Stock Price Prediction Model Based on LSTM Reflecting Interest Rate Fluctuations." Korean Institute of Smart Media 13, no. 12 (2024): 99–108. https://doi.org/10.30693/smj.2024.13.12.99.
Pełny tekst źródłaSandeep, Yadav. "Predictive Modeling of Cryptocurrency Price Movements Using Autoregressive and Neural Network Models." International Journal on Science and Technology 14, no. 1 (2023): 1–9. https://doi.org/10.5281/zenodo.14288541.
Pełny tekst źródłaHadi Abdullah, Aamna Tariq, Ijaz khan, Rizwan Iqbal, Faisal Khan, and Arshad iqbal. "<b>Recurrent Neural Networks in Time-Series Forecasting: A Deep Learning Approach to Stock Market Prediction</b>." Annual Methodological Archive Research Review 3, no. 6 (2025): 72–101. https://doi.org/10.63075/24bjb734.
Pełny tekst źródłaIftikhar, Hasnain, Murad Khan, Josué E. Turpo-Chaparro, Paulo Canas Rodrigues, and Javier Linkolk López-Gonzales. "Forecasting stock prices using a novel filtering-combination technique: Application to the Pakistan stock exchange." AIMS Mathematics 9, no. 2 (2024): 3264–88. http://dx.doi.org/10.3934/math.2024159.
Pełny tekst źródłaGupta, Priyank, Sanjay Kumar Gupta, and Rakesh Singh Jadon. "Adaptive Grey Wolf Optimization Technique for Stock Index Price Prediction on Recurring Neural Network Variants." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 11s (2023): 309–18. http://dx.doi.org/10.17762/ijritcc.v11i11s.8103.
Pełny tekst źródłaLee, Sangheon, and Poongjin Cho. "Graph-Based Stock Volatility Forecasting with Effective Transfer Entropy and Hurst-Based Regime Adaptation." Fractal and Fractional 9, no. 6 (2025): 339. https://doi.org/10.3390/fractalfract9060339.
Pełny tekst źródłaDin, Riaz Ud, Salman Ahmed, Saddam Hussain Khan, Abdullah Albanyan, Julian Hoxha, and Bader Alkhamees. "A novel decision ensemble framework: Attention-customized BiLSTM and XGBoost for speculative stock price forecasting." PLOS ONE 20, no. 4 (2025): e0320089. https://doi.org/10.1371/journal.pone.0320089.
Pełny tekst źródłaKumar, Manish. "Returns and volatility spillover between stock prices and exchange rates." International Journal of Emerging Markets 8, no. 2 (2013): 108–28. http://dx.doi.org/10.1108/17468801311306984.
Pełny tekst źródłaLi, Shuaishuai, and Weizhen Chen. "A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism." Technologies 13, no. 6 (2025): 219. https://doi.org/10.3390/technologies13060219.
Pełny tekst źródłaLiu, Yezhen, Xilong Yu, Yanhua Wu, and Shuhong Song. "Forecasting Variation Trends of Stocks via Multiscale Feature Fusion and Long Short-Term Memory Learning." Scientific Programming 2021 (September 21, 2021): 1–9. http://dx.doi.org/10.1155/2021/5113151.
Pełny tekst źródłaLiu, Bingchun, Xingyu Wang, Shiming Zhao, and Yan Xu. "Prediction of Baltic Dry Index Based on GRA-BiLSTM Combined Model." International Journal of Maritime Engineering 165, A3 (2024): 217–28. http://dx.doi.org/10.5750/ijme.v165ia3.1212.
Pełny tekst źródłaDas, Asit Kumar, Debahuti Mishra, Kaberi Das, et al. "A Deep Network-Based Trade and Trend Analysis System to Observe Entry and Exit Points in the Forex Market." Mathematics 10, no. 19 (2022): 3632. http://dx.doi.org/10.3390/math10193632.
Pełny tekst źródłaWang, Bingxing. "Empirical Evaluation of Large Language Models for Asset‑Return Prediction." Academic Journal of Sociology and Management 3, no. 4 (2025): 18–25. https://doi.org/10.70393/616a736d.333035.
Pełny tekst źródłaIvanov, Illia. "RETURNS FORECASTING WITH A MACROECONOMIC FACTOR-BASED DECISION TREE MODEL (MARPFM)." Європейський науковий журнал Економічних та Фінансових інновацій 1, no. 15 (2025): 193–209. https://doi.org/10.32750/2025-0117.
Pełny tekst źródłaAhmadian, Ali, Kumaraswamy Ponnambalam, Ali Almansoori, and Ali Elkamel. "Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning." Energies 16, no. 2 (2023): 1000. http://dx.doi.org/10.3390/en16021000.
Pełny tekst źródłaBui, Thanh Khoa, and Trong Huynh Tran. "Forecasting stock price movement direction by machine learning algorithm." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 6 (2022): 6625–34. https://doi.org/10.11591/ijece.v12i6.pp6625-6634.
Pełny tekst źródłaKhoa, Bui Thanh, and Tran Trong Huynh. "Forecasting stock price movement direction by machine learning algorithm." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 6 (2022): 6625. http://dx.doi.org/10.11591/ijece.v12i6.pp6625-6634.
Pełny tekst źródłaM., Jeyakarthic, and Punitha S. "Hybridization of Bat Algorithm with XGBOOST Model for Precise Prediction of Stock Market Directions." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 3375–82. https://doi.org/10.35940/ijeat.C5535.029320.
Pełny tekst źródłaRathore, Anupriya, and Prof Priyanka Khabiya. "Predicting the Direction of Stock Markets Employing Back Propagation in Neural Networks." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (2024): 1–6. http://dx.doi.org/10.55041/ijsrem24209.
Pełny tekst źródła