Artykuły w czasopismach na temat „Primordial atmosphere”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Primordial atmosphere”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ragossnig, Florian, Alexander Stökl, Ernst Dorfi, Colin P. Johnstone, Daniel Steiner, and Manuel Güdel. "Interaction of infalling solid bodies with primordial atmospheres of disk-embedded planets." Astronomy & Astrophysics 618 (October 2018): A19. http://dx.doi.org/10.1051/0004-6361/201832681.
Pełny tekst źródłaChance, Quadry, Sarah Ballard, and Keivan Stassun. "Signatures of Impact-driven Atmospheric Loss in Large Ensembles of Exoplanets." Astrophysical Journal 937, no. 1 (2022): 39. http://dx.doi.org/10.3847/1538-4357/ac8a97.
Pełny tekst źródłaKimura, Tadahiro, and Masahiro Ikoma. "Formation of aqua planets with water of nebular origin: effects of water enrichment on the structure and mass of captured atmospheres of terrestrial planets." Monthly Notices of the Royal Astronomical Society 496, no. 3 (2020): 3755–66. http://dx.doi.org/10.1093/mnras/staa1778.
Pełny tekst źródłaModirrousta-Galian, Darius, and Jun Korenaga. "The Diffusion Limit of Photoevaporation in Primordial Planetary Atmospheres." Astrophysical Journal 965, no. 1 (2024): 97. http://dx.doi.org/10.3847/1538-4357/ad276f.
Pełny tekst źródłaSinclair, Catriona A., Mark C. Wyatt, Alessandro Morbidelli, and David Nesvorný. "Evolution of the Earth’s atmosphere during Late Veneer accretion." Monthly Notices of the Royal Astronomical Society 499, no. 4 (2020): 5334–62. http://dx.doi.org/10.1093/mnras/staa3210.
Pełny tekst źródłaLiu, Lin-gun. "The Proto-Atmosphere of Terrestrial Planets." European Journal of Applied Sciences 13, no. 02 (2025): 473–78. https://doi.org/10.14738/aivp.1302.18571.
Pełny tekst źródłaSaxena, Prabal, Lindy Elkins-Tanton, Noah Petro, and Avi Mandell. "A model of the primordial lunar atmosphere." Earth and Planetary Science Letters 474 (September 2017): 198–205. http://dx.doi.org/10.1016/j.epsl.2017.06.031.
Pełny tekst źródłaKurosaki, Kenji, Yasunori Hori, Masahiro Ogihara, and Masanobu Kunitomo. "Evolution of a Water-rich Atmosphere Formed by a Giant Impact on an Earth-sized Planet." Astrophysical Journal 957, no. 2 (2023): 67. http://dx.doi.org/10.3847/1538-4357/acfe0a.
Pełny tekst źródłaMelosh, H. J., and A. M. Vickery. "Impact erosion of the primordial atmosphere of Mars." Nature 338, no. 6215 (1989): 487–89. http://dx.doi.org/10.1038/338487a0.
Pełny tekst źródłaUeda, Hisahiro, and Takazo Shibuya. "Composition of the Primordial Ocean Just after Its Formation: Constraints from the Reactions between the Primitive Crust and a Strongly Acidic, CO2-Rich Fluid at Elevated Temperatures and Pressures." Minerals 11, no. 4 (2021): 389. http://dx.doi.org/10.3390/min11040389.
Pełny tekst źródłaBiersteker, John B., and Hilke E. Schlichting. "Losing oceans: The effects of composition on the thermal component of impact-driven atmospheric loss." Monthly Notices of the Royal Astronomical Society 501, no. 1 (2020): 587–95. http://dx.doi.org/10.1093/mnras/staa3614.
Pełny tekst źródłaZhou, Li, Bo Ma, Yonghao Wang, and Yinan Zhu. "Hubble WFC3 Spectroscopy of the Rocky Planet L 98–59 b: No Evidence for a Cloud-free Primordial Atmosphere." Astronomical Journal 164, no. 5 (2022): 203. http://dx.doi.org/10.3847/1538-3881/ac8fe9.
Pełny tekst źródłaAmaral, Laura N. R. do, Evgenya L. Shkolnik, R. O. Parke Loyd, and Sarah Peacock. "The Impact of Stellar Flares on the Atmospheric Escape of Exoplanets Orbiting M Stars. I. Insights from the AU Mic System." Astrophysical Journal 985, no. 1 (2025): 100. https://doi.org/10.3847/1538-4357/adc932.
Pełny tekst źródłaScarsdale, Nicholas, Nicholas Wogan, Hannah R. Wakeford та ін. "JWST COMPASS: The 3–5 μm Transmission Spectrum of the Super-Earth L 98-59 c". Astronomical Journal 168, № 6 (2024): 276. http://dx.doi.org/10.3847/1538-3881/ad73cf.
Pełny tekst źródłaNAKAZAWA, Kiyoshi, Hiroshi MIZUNO, Minoru SEKIYA, and Chushiro HAYASHI. "Structure of the primordial atmosphere surrounding the early-earth." Journal of geomagnetism and geoelectricity 37, no. 8 (1985): 781–99. http://dx.doi.org/10.5636/jgg.37.781.
Pełny tekst źródłaMukhopadhyay, Sujoy, and Rita Parai. "Noble Gases: A Record of Earth's Evolution and Mantle Dynamics." Annual Review of Earth and Planetary Sciences 47, no. 1 (2019): 389–419. http://dx.doi.org/10.1146/annurev-earth-053018-060238.
Pełny tekst źródłaMisener, William, and Hilke E. Schlichting. "To cool is to keep: residual H/He atmospheres of super-Earths and sub-Neptunes." Monthly Notices of the Royal Astronomical Society 503, no. 4 (2021): 5658–74. http://dx.doi.org/10.1093/mnras/stab895.
Pełny tekst źródłaMicca Longo, Gaia, Luca Vialetto, Paola Diomede, Savino Longo, and Vincenzo Laporta. "Plasma Modeling and Prebiotic Chemistry: A Review of the State-of-the-Art and Perspectives." Molecules 26, no. 12 (2021): 3663. http://dx.doi.org/10.3390/molecules26123663.
Pełny tekst źródłaRogers, James G., Caroline Dorn, Vivasvaan Aditya Raj, Hilke E. Schlichting, and Edward D. Young. "Most Super-Earths Have Less Than 3% Water." Astrophysical Journal 979, no. 1 (2025): 79. https://doi.org/10.3847/1538-4357/ad9f61.
Pełny tekst źródłaTrafton, L., S. A. Stern, and G. R. Gladstone. "The Pluto-Charon system: The escape of charon's primordial atmosphere." Icarus 74, no. 1 (1988): 108–20. http://dx.doi.org/10.1016/0019-1035(88)90033-4.
Pełny tekst źródłaAlam, Munazza K., Peter Gao, Jea Adams Redai, et al. "JWST COMPASS: The First Near- to Mid-infrared Transmission Spectrum of the Hot Super-Earth L 168-9 b." Astronomical Journal 169, no. 1 (2024): 15. https://doi.org/10.3847/1538-3881/ad8eb5.
Pełny tekst źródłaKubyshkina, Daria, and Aline A. Vidotto. "How does the mass and activity history of the host star affect the population of low-mass planets?" Monthly Notices of the Royal Astronomical Society 504, no. 2 (2021): 2034–50. http://dx.doi.org/10.1093/mnras/stab897.
Pełny tekst źródłaAtri, Dimitra, and Shane R. Carberry Mogan. "Stellar flares versus luminosity: XUV-induced atmospheric escape and planetary habitability." Monthly Notices of the Royal Astronomical Society: Letters 500, no. 1 (2020): L1—L5. http://dx.doi.org/10.1093/mnrasl/slaa166.
Pełny tekst źródłaAmsler Moulanier, Alizée, Olivier Mousis, Alexis Bouquet, and Christopher R. Glein. "The Role of Ammonia in the Distribution of Volatiles in the Primordial Hydrosphere of Europa." Planetary Science Journal 6, no. 1 (2025): 1. https://doi.org/10.3847/psj/ad9925.
Pełny tekst źródłaLibby-Roberts, Jessica E., Zachory K. Berta-Thompson, Hannah Diamond-Lowe, et al. "The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination." Astronomical Journal 164, no. 2 (2022): 59. http://dx.doi.org/10.3847/1538-3881/ac75de.
Pełny tekst źródłaCannon, Kevin M., Stephen W. Parman, and John F. Mustard. "Primordial clays on Mars formed beneath a steam or supercritical atmosphere." Nature 552, no. 7683 (2017): 88–91. http://dx.doi.org/10.1038/nature24657.
Pełny tekst źródłaHaq, Ehsan ul, Farwah Waseem, and Abdul Baqi. "Appraisal of Temporal Variations in Atmospheric Compositions over South Asia by Addition of Various Pollutant’s in Recent Decade." Vol 3 Issue 1 3, no. 1 (2021): 1–15. http://dx.doi.org/10.33411/ijist/2021030101.
Pełny tekst źródłaYalinewich, Almog, and Matthew E. Caplan. "Crater morphology of primordial black hole impacts." Monthly Notices of the Royal Astronomical Society: Letters 505, no. 1 (2021): L115—L119. http://dx.doi.org/10.1093/mnrasl/slab063.
Pełny tekst źródłaMizuno, Hiroshi, and Kiyoshi Nakazawa. "Chapter 22. Primordial Atmosphere Surrounding a Protoplanet and Formation of Jovian Planets." Progress of Theoretical Physics Supplement 96 (1988): 266–73. http://dx.doi.org/10.1143/ptps.96.266.
Pełny tekst źródłaDavenport, Brian, Eliza M. R. Kempton, Matthew C. Nixon, et al. "TOI-421 b: A Hot Sub-Neptune with a Haze-free, Low Mean Molecular Weight Atmosphere." Astrophysical Journal Letters 984, no. 2 (2025): L44. https://doi.org/10.3847/2041-8213/adcd76.
Pełny tekst źródłaModirrousta-Galian, D., B. Stelzer, E. Magaudda, et al. "GJ 357 b." Astronomy & Astrophysics 641 (September 2020): A113. http://dx.doi.org/10.1051/0004-6361/202038280.
Pełny tekst źródłaMicca Longo, Gaia, and Savino Longo. "The role of primordial atmosphere composition in organic matter delivery to early Earth." Rendiconti Lincei. Scienze Fisiche e Naturali 31, no. 1 (2020): 53–64. http://dx.doi.org/10.1007/s12210-020-00878-x.
Pełny tekst źródłaMolaverdikhani, K., Ch Helling, B. W. P. Lew, et al. "Understanding the atmospheric properties and chemical composition of the ultra-hot Jupiter HAT-P-7b." Astronomy & Astrophysics 635 (March 2020): A31. http://dx.doi.org/10.1051/0004-6361/201937044.
Pełny tekst źródłaSchroeder I, Isaac R. H. G., Kathrin Altwegg, Hans Balsiger, et al. "16O/18O ratio in water in the coma of comet 67P/Churyumov-Gerasimenko measured with the Rosetta/ROSINA double-focusing mass spectrometer." Astronomy & Astrophysics 630 (September 20, 2019): A29. http://dx.doi.org/10.1051/0004-6361/201833806.
Pełny tekst źródłaJaupart, Etienne, Sebatien Charnoz, and Manuel Moreira. "Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets." Icarus 293 (September 2017): 199–205. http://dx.doi.org/10.1016/j.icarus.2017.04.022.
Pełny tekst źródłaAfshordi, N., R. B. Mann, and R. Pourhasan. "A holographic big bang?" International Journal of Modern Physics D 24, no. 12 (2015): 1544029. http://dx.doi.org/10.1142/s0218271815440290.
Pełny tekst źródłaZhang, Michael, Jacob L. Bean, David Wilson, et al. "Constraining Atmospheric Composition from the Outflow: Helium Observations Reveal the Fundamental Properties of Two Planets Straddling the Radius Gap." Astronomical Journal 169, no. 4 (2025): 204. https://doi.org/10.3847/1538-3881/adb490.
Pełny tekst źródłaFerus, Martin, Fabio Pietrucci, Antonino Marco Saitta, et al. "Formation of nucleobases in a Miller–Urey reducing atmosphere." Proceedings of the National Academy of Sciences 114, no. 17 (2017): 4306–11. http://dx.doi.org/10.1073/pnas.1700010114.
Pełny tekst źródłaMontoya, David. "Hostilidad perpetua, transformaciones transitorias: Persona, cuerpo y moralidad entre los tsotsiles de Chamula, Chiapas / Perpetual hostility, transitory transformations: Person, body and morality between the tsotsiles of Chamula, Chiapas." Revista Trace, no. 78 (July 31, 2020): 67. http://dx.doi.org/10.22134/trace.78.2020.735.
Pełny tekst źródłaSwindle, T. D., and J. H. Jones. "The xenon isotopic composition of the primordial Martian atmosphere: Contributions from solar and fission components." Journal of Geophysical Research: Planets 102, E1 (1997): 1671–78. http://dx.doi.org/10.1029/96je03110.
Pełny tekst źródłaAnderson, Don L. "A model to explain the various paradoxes associated with mantle noble gas geochemistry." Proceedings of the National Academy of Sciences 95, no. 16 (1998): 9087–92. http://dx.doi.org/10.1073/pnas.95.16.9087.
Pełny tekst źródłaChakrabarty, Aritra, and Gijs D. Mulders. "Where Are the Water Worlds? Identifying Exo-water-worlds Using Models of Planet Formation and Atmospheric Evolution." Astrophysical Journal 966, no. 2 (2024): 185. http://dx.doi.org/10.3847/1538-4357/ad3802.
Pełny tekst źródłaAtreya, Sushil K., Melissa G. Trainer, Heather B. Franz, et al. "Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss." Geophysical Research Letters 40, no. 21 (2013): 5605–9. http://dx.doi.org/10.1002/2013gl057763.
Pełny tekst źródłaXing, Lei, Dongdong Yan, and Jianheng Guo. "The Mass Fractionation of Helium in the Escaping Atmosphere of HD 209458b*." Astrophysical Journal 953, no. 2 (2023): 166. http://dx.doi.org/10.3847/1538-4357/ace43f.
Pełny tekst źródłaSasaki, Sho, and Kiyoshi Nakazawa. "Origin of isotopic fractionation of terrestrial Xe: hydrodynamic fractionation during escape of the primordial H2He atmosphere." Earth and Planetary Science Letters 89, no. 3-4 (1988): 323–34. http://dx.doi.org/10.1016/0012-821x(88)90120-3.
Pełny tekst źródłaÁvila, Patricio Javier, Tommaso Grassi, Stefano Bovino, et al. "Presence of water on exomoons orbiting free-floating planets: a case study." International Journal of Astrobiology 20, no. 4 (2021): 300–311. http://dx.doi.org/10.1017/s1473550421000173.
Pełny tekst źródłaMisener, William, Matthäus Schulik, Hilke E. Schlichting, and James E. Owen. "Blowin’ in the Nonisothermal Wind: Core-powered Mass Loss with Hydrodynamic Radiative Transfer." Astrophysical Journal 980, no. 1 (2025): 152. https://doi.org/10.3847/1538-4357/ada777.
Pełny tekst źródłaGibson, Carl H. "Turbulence in the Ocean, Atmosphere, Galaxy, and Universe." Applied Mechanics Reviews 49, no. 5 (1996): 299–315. http://dx.doi.org/10.1115/1.3101929.
Pełny tekst źródłaKubyshkina, D., L. Fossati, A. J. Mustill, et al. "The Kepler-11 system: evolution of the stellar high-energy emission and initial planetary atmospheric mass fractions." Astronomy & Astrophysics 632 (November 29, 2019): A65. http://dx.doi.org/10.1051/0004-6361/201936581.
Pełny tekst źródłaOrell-Miquel, J., F. Murgas, E. Pallé, et al. "A tentative detection of He I in the atmosphere of GJ 1214 b." Astronomy & Astrophysics 659 (March 2022): A55. http://dx.doi.org/10.1051/0004-6361/202142455.
Pełny tekst źródła