Gotowa bibliografia na temat „Probability learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Probability learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Probability learning"
SAEKI, Daisuke. "Probability learning in golden hamsters". Japanese Journal of Animal Psychology 49, nr 1 (1999): 41–47. http://dx.doi.org/10.2502/janip.49.41.
Pełny tekst źródłaGroth, Randall E., Jennifer A. Bergner i Jathan W. Austin. "Dimensions of Learning Probability Vocabulary". Journal for Research in Mathematics Education 51, nr 1 (styczeń 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.2019.0008.
Pełny tekst źródłaGroth, Randall E., Jennifer A. Bergner i Jathan W. Austin. "Dimensions of Learning Probability Vocabulary". Journal for Research in Mathematics Education 51, nr 1 (styczeń 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.51.1.0075.
Pełny tekst źródłaRivas, Javier. "Probability matching and reinforcement learning". Journal of Mathematical Economics 49, nr 1 (styczeń 2013): 17–21. http://dx.doi.org/10.1016/j.jmateco.2012.09.004.
Pełny tekst źródłaWest, Bruce J. "Fractal Probability Measures of Learning". Methods 24, nr 4 (sierpień 2001): 395–402. http://dx.doi.org/10.1006/meth.2001.1208.
Pełny tekst źródłaJiang, Xiaolei. "Conditional Probability in Machine Learning". Journal of Education and Educational Research 4, nr 2 (20.07.2023): 31–33. http://dx.doi.org/10.54097/jeer.v4i2.10647.
Pełny tekst źródłaMalley, J. D., J. Kruppa, A. Dasgupta, K. G. Malley i A. Ziegler. "Probability Machines". Methods of Information in Medicine 51, nr 01 (2012): 74–81. http://dx.doi.org/10.3414/me00-01-0052.
Pełny tekst źródłaDawson, Michael R. W. "Probability Learning by Perceptrons and People". Comparative Cognition & Behavior Reviews 15 (2022): 1–188. http://dx.doi.org/10.3819/ccbr.2019.140011.
Pełny tekst źródłaHIRASAWA, Kotaro, Masaaki HARADA, Masanao OHBAYASHI, Juuichi MURATA i Jinglu HU. "Probability and Possibility Automaton Learning Network". IEEJ Transactions on Industry Applications 118, nr 3 (1998): 291–99. http://dx.doi.org/10.1541/ieejias.118.291.
Pełny tekst źródłaGroth, Randall E., Jaime Butler i Delmar Nelson. "Overcoming challenges in learning probability vocabulary". Teaching Statistics 38, nr 3 (26.05.2016): 102–7. http://dx.doi.org/10.1111/test.12109.
Pełny tekst źródłaRozprawy doktorskie na temat "Probability learning"
Gozenman, Filiz. "Interaction Of Probability Learning And Working Memory". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614535/index.pdf.
Pełny tekst źródłaRYSZ, TERI. "METACOGNITION IN LEARNING ELEMENTARY PROBABILITY AND STATISTICS". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1099248340.
Pełny tekst źródłaBouchacourt, Diane. "Task-oriented learning of structured probability distributions". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0665495b-afbb-483b-8bdf-cbc6ae5baeff.
Pełny tekst źródłaLi, Chengtao Ph D. Massachusetts Institute of Technology. "Diversity-inducing probability measures for machine learning". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121724.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-176).
Subset selection problems arise in machine learning within kernel approximation, experimental design, and numerous other applications. In such applications, one often seeks to select diverse subsets of items to represent the population. One way to select such diverse subsets is to sample according to Diversity-Inducing Probability Measures (DIPMs) that assign higher probabilities to more diverse subsets. DIPMs underlie several recent breakthroughs in mathematics and theoretical computer science, but their power has not yet been explored for machine learning. In this thesis, we investigate DIPMs, their mathematical properties, sampling algorithms, and applications. Perhaps the best known instance of a DIPM is a Determinantal Point Process (DPP). DPPs originally arose in quantum physics, and are known to have deep relations to linear algebra, combinatorics, and geometry. We explore applications of DPPs to kernel matrix approximation and kernel ridge regression.
In these applications, DPPs deliver strong approximation guarantees and obtain superior performance compared to existing methods. We further develop an MCMC sampling algorithm accelerated by Gauss-type quadratures for DPPs. The algorithm runs several orders of magnitude faster than the existing ones. DPPs lie in a larger class of DIPMs called Strongly Rayleigh (SR) Measures. Instances of SR measures display a strong negative dependence property known as negative association, and as such can be used to model subset diversity. We study mathematical properties of SR measures, and construct the first provably fast-mixing Markov chain that samples from general SR measures. As a special case, we consider an SR measure called Dual Volume Sampling (DVS), for which we present the first poly-time sampling algorithm.
While all considered distributions over subsets are unconstrained, those of interest in the real world usually come with constraints due to prior knowledge, resource limitations or personal preferences. Hence we investigate sampling from constrained versions of DIPMs. Specifically, we consider DIPMs with cardinality constraints and matroid base constraints and construct poly-time approximate sampling algorithms for them. Such sampling algorithms will enable practical uses of constrained DIPMs in real world.
by Chengtao Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Hunt, Gareth David. "Reinforcement Learning for Low Probability High Impact Risks". Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/77106.
Pełny tekst źródłaSłowiński, Witold. "Autonomous learning of domain models from probability distribution clusters". Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=211059.
Pełny tekst źródłaBenson, Carol Trinko Jones Graham A. "Assessing students' thinking in modeling probability contexts". Normal, Ill. Illinois State University, 2000. http://wwwlib.umi.com/cr/ilstu/fullcit?p9986725.
Pełny tekst źródłaTitle from title page screen, viewed May 11, 2006. Dissertation Committee: Graham A. Jones (chair), Kenneth N. Berk, Patricia Klass, Cynthia W. Langrall, Edward S. Mooney. Includes bibliographical references (leaves 115-124) and abstract. Also available in print.
Rast, Jeanne D. "A Comparison of Learning Subjective and Traditional Probability in Middle Grades". Digital Archive @ GSU, 2005. http://digitalarchive.gsu.edu/msit_diss/4.
Pełny tekst źródłaLindsay, David George. "Machine learning techniques for probability forecasting and their practical evaluations". Thesis, Royal Holloway, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445274.
Pełny tekst źródłaKornfeld, Sarah. "Predicting Default Probability in Credit Risk using Machine Learning Algorithms". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275656.
Pełny tekst źródłaDenna uppsats har undersökt internt utvecklade modeller för att estimera sannolikheten för utebliven betalning (PD) inom kreditrisk. Samtidigt som nya regelverk sätter restriktioner på metoder för modellering av kreditrisk och i viss mån hämmar utvecklingen av riskmätning, utvecklas samtidigt mer avancerade metoder inom maskinlärning för riskmätning. Således har avvägningen mellan strängare regelverk av internt utvecklade modeller och framsteg i dataanalys undersökts genom jämförelse av modellprestanda för referens metoden logistisk regression för uppskattning av PD med maskininlärningsteknikerna beslutsträd, Random Forest, Gradient Boosting och artificiella neurala nätverk (ANN). Dataunderlaget kommer från SEB och består utav 45 variabler och 24 635 observationer. När maskininlärningsteknikerna blir mer komplexa för att gynna förbättrad prestanda är det ofta på bekostnad av modellens tolkbarhet. En undersökande analys gjordes därför med målet att mäta förklarningsvariablers betydelse i maskininlärningsteknikerna. Resultaten från den undersökande analysen kommer att jämföras med resultat från etablerade metoder som mäter variabelsignifikans. Resultatet av studien visar att den logistiska regressionen presterade bättre än maskininlärningsteknikerna baserat på prestandamåttet AUC som mätte 0.906. Resultatet from den undersökande analysen för förklarningsvariablers betydelse ökade tolkbarheten för maskininlärningsteknikerna. Resultatet blev även validerat med utkomsten av de etablerade metoderna för att mäta variabelsignifikans.
Książki na temat "Probability learning"
Batanero, Carmen, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee i Ernesto Sánchez. Research on Teaching and Learning Probability. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31625-3.
Pełny tekst źródłaDasGupta, Anirban. Probability for Statistics and Machine Learning. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9634-3.
Pełny tekst źródłaAggarwal, Charu C. Probability and Statistics for Machine Learning. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5.
Pełny tekst źródłaEgan, J. Chernoff, Engel Joachim, Lee Hollylynne S i Sánchez Ernesto, red. Research on Teaching and Learning Probability. Cham: Springer, 2016.
Znajdź pełny tekst źródłaUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9.
Pełny tekst źródłaUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6.
Pełny tekst źródłaUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3.
Pełny tekst źródłaPeck, Roxy. Statistics: Learning from data. Australia: Brooks/Cole, Cengage Learning, 2014.
Znajdź pełny tekst źródłaKnez, Igor. To know what to know before knowing: Acquisition of functional rules in probabilistic ecologies. Uppsala: Uppsala University, 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Probability learning"
Glenberg, Arthur M., i Matthew E. Andrzejewski. "Probability". W Learning From Data, 105–19. Wyd. 4. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003025405-6.
Pełny tekst źródłaZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag i in. "Posterior Probability". W Encyclopedia of Machine Learning, 780. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_648.
Pełny tekst źródłaZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag i in. "Prior Probability". W Encyclopedia of Machine Learning, 782. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_658.
Pełny tekst źródłaKumar Singh, Bikesh, i G. R. Sinha. "Probability Theory". W Machine Learning in Healthcare, 23–33. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003097808-2.
Pełny tekst źródłaUnpingco, José. "Probability". W Python for Probability, Statistics, and Machine Learning, 35–100. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6_2.
Pełny tekst źródłaUnpingco, José. "Probability". W Python for Probability, Statistics, and Machine Learning, 39–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9_2.
Pełny tekst źródłaUnpingco, José. "Probability". W Python for Probability, Statistics, and Machine Learning, 47–134. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3_2.
Pełny tekst źródłaFaul, A. C. "Probability Theory". W A Concise Introduction to Machine Learning, 7–61. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC machine learning & pattern recognition: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351204750-2.
Pełny tekst źródłaAggarwal, Charu C. "Probability Distributions". W Probability and Statistics for Machine Learning, 127–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5_4.
Pełny tekst źródłaGhatak, Abhijit. "Probability and Distributions". W Machine Learning with R, 31–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6808-9_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Probability learning"
Temlyakov, V. N. "Optimal estimators in learning theory". W Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Pełny tekst źródłaNeville, Jennifer, David Jensen, Lisa Friedland i Michael Hay. "Learning relational probability trees". W the ninth ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956750.956830.
Pełny tekst źródłaArieli, Itai, Yakov Babichenko i Manuel Mueller-Frank. "Naive Learning Through Probability Matching". W EC '19: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3328526.3329601.
Pełny tekst źródłaSánchez, Emesta, Sibel Kazak i Egan J. Chernoff. "Teaching and Learning of Probability". W The 14th International Congress on Mathematical Education. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811287152_0035.
Pełny tekst źródłaHa, Ming-hu, Zhi-fang Feng, Er-ling Du i Yun-chao Bai. "Further Discussion on Quasi-Probability". W 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258542.
Pełny tekst źródłaBurgos, María, María Del Mar López-Martín i Nicolás Tizón-Escamilla. "ALGEBRAIC REASONING IN PROBABILITY TASKS". W 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.0777.
Pełny tekst źródłaHerlau, Tue. "Active learning of causal probability trees". W 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00193.
Pełny tekst źródłaEugênio, Robson, Carlos Monteiro, Liliane Carvalho, José Roberto Costa Jr. i Karen François. "MATHEMATICS TEACHERS LEARNING ABOUT PROBABILITY LITERACY". W 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.0272.
Pełny tekst źródłaStruski, Łukasz, Adam Pardyl, Jacek Tabor i Bartosz Zieliński. "ProPML: Probability Partial Multi-label Learning". W 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023. http://dx.doi.org/10.1109/dsaa60987.2023.10302620.
Pełny tekst źródłaRamishetty, Sravani, i Abolfazl Hashemi. "High Probability Guarantees For Federated Learning". W 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2023. http://dx.doi.org/10.1109/allerton58177.2023.10313468.
Pełny tekst źródłaRaporty organizacyjne na temat "Probability learning"
Shute, Valerie J., i Lisa A. Gawlick-Grendell. An Experimental Approach to Teaching and Learning Probability: Stat Lady. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1996. http://dx.doi.org/10.21236/ada316969.
Pełny tekst źródłaIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, grudzień 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Pełny tekst źródłaKriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.
Pełny tekst źródłaKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Pełny tekst źródłaGribok, Andrei V., Kevin P. Chen i Qirui Wang. Machine-Learning Enabled Evaluation of Probability of Piping Degradation In Secondary Systems of Nuclear Power Plants. Office of Scientific and Technical Information (OSTI), maj 2020. http://dx.doi.org/10.2172/1634815.
Pełny tekst źródłade Luis, Mercedes, Emilio Rodríguez i Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, wrzesień 2023. http://dx.doi.org/10.53479/33560.
Pełny tekst źródłaDinarte, Lelys, Pablo Egaña del Sol i Claudia Martínez. When Emotion Regulation Matters: The Efficacy of Socio-Emotional Learning to Address School-Based Violence in Central America. Inter-American Development Bank, marzec 2024. http://dx.doi.org/10.18235/0012854.
Pełny tekst źródłaMoreno Pérez, Carlos, i Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, listopad 2022. http://dx.doi.org/10.53479/23646.
Pełny tekst źródłaRobson, Jennifer. The Canada Learning Bond, financial capability and tax-filing: Results from an online survey of low and modest income parents. SEED Winnipeg/Carleton University Arthur Kroeger College of Public Affairs, marzec 2022. http://dx.doi.org/10.22215/clb20220301.
Pełny tekst źródłaSchiefelbein, Ernesto, Paulina Schiefelbein i Laurence Wolff. Cost-Effectiveness of Education Policies in Latin America: A Survey of Expert Opinion. Inter-American Development Bank, grudzień 1998. http://dx.doi.org/10.18235/0008789.
Pełny tekst źródła