Artykuły w czasopismach na temat „Protein Based Molecular Diseases”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Protein Based Molecular Diseases”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Yan, Yi Jia, Xiao-Lin Wang, Hai Shang, and Yu Tian. "Protein-Targeted Degradation Agents Based on Natural Products." Pharmaceuticals 16, no. 1 (2022): 46. http://dx.doi.org/10.3390/ph16010046.
Pełny tekst źródłaTelling, Glenn. "Protein-based PCR for prion diseases?" Nature Medicine 7, no. 7 (2001): 778–79. http://dx.doi.org/10.1038/89895.
Pełny tekst źródłaYadav, Kusum, Anurag Yadav, Priyanka Vashistha, Veda P. Pandey, and Upendra N. Dwivedi. "Protein Misfolding Diseases and Therapeutic Approaches." Current Protein & Peptide Science 20, no. 12 (2019): 1226–45. http://dx.doi.org/10.2174/1389203720666190610092840.
Pełny tekst źródłaTeribele Venturin, Gianina, and Zhen Cheng. "Small Peptide and Protein-based Molecular Probes for Imaging Neurological Diseases." Current Protein & Peptide Science 17, no. 6 (2016): 543–58. http://dx.doi.org/10.2174/1389203717666160101123500.
Pełny tekst źródłaLorenzo-Pouso, Alejandro I., Mario Pérez-Sayáns, Susana B. Bravo, et al. "Protein-Based Salivary Profiles as Novel Biomarkers for Oral Diseases." Disease Markers 2018 (November 7, 2018): 1–22. http://dx.doi.org/10.1155/2018/6141845.
Pełny tekst źródłaPang, Yihe, and Bin Liu. "DMFpred: Predicting protein disorder molecular functions based on protein cubic language model." PLOS Computational Biology 18, no. 10 (2022): e1010668. http://dx.doi.org/10.1371/journal.pcbi.1010668.
Pełny tekst źródłaKovacs, Gabor G. "Molecular pathology of neurodegenerative diseases: principles and practice." Journal of Clinical Pathology 72, no. 11 (2019): 725–35. http://dx.doi.org/10.1136/jclinpath-2019-205952.
Pełny tekst źródłaChaudhuri, Tapan K., and Subhankar Paul. "Protein-misfolding diseases and chaperone-based therapeutic approaches." FEBS Journal 273, no. 7 (2006): 1331–49. http://dx.doi.org/10.1111/j.1742-4658.2006.05181.x.
Pełny tekst źródłaMishra and Dey. "Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood." Biomolecules 9, no. 11 (2019): 740. http://dx.doi.org/10.3390/biom9110740.
Pełny tekst źródłaGul, Irfan, Amreena Hassan, Ehtishamul Haq, et al. "An Investigation of the Antiviral Potential of Phytocompounds against Avian Infectious Bronchitis Virus through Template-Based Molecular Docking and Molecular Dynamics Simulation Analysis." Viruses 15, no. 4 (2023): 847. http://dx.doi.org/10.3390/v15040847.
Pełny tekst źródłaRajesh, Netra Unni, and Anam Qudrat. "Protein Chimera-based Ca2+ Rewiring as a Treatment Modality for Neurodegeneration." Current Psychopharmacology 8, no. 1 (2019): 27–40. http://dx.doi.org/10.2174/2211556007666181001102702.
Pełny tekst źródłaSuratanee, Apichat, and Kitiporn Plaimas. "Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations." Bioinformatics and Biology Insights 11 (January 1, 2017): 117793221772040. http://dx.doi.org/10.1177/1177932217720405.
Pełny tekst źródłaOhue, Masahito, Yuki Kojima, and Takatsugu Kosugi. "Generating Potential Protein-Protein Interaction Inhibitor Molecules Based on Physicochemical Properties." Molecules 28, no. 15 (2023): 5652. http://dx.doi.org/10.3390/molecules28155652.
Pełny tekst źródłaShi, Haonan. "Molecular Glues and Molecular Glue Degraders: Mechanisms, Design, and Therapeutic Applications." Transactions on Materials, Biotechnology and Life Sciences 7 (December 24, 2024): 213–20. https://doi.org/10.62051/r1m5q711.
Pełny tekst źródłaRochet, Jean-Christophe. "Novel therapeutic strategies for the treatment of protein-misfolding diseases." Expert Reviews in Molecular Medicine 9, no. 17 (2007): 1–34. http://dx.doi.org/10.1017/s1462399407000385.
Pełny tekst źródłaKumari, Uma, Manaswinee Bora, and MN Akshaya. "Homology Modeling and Structure Based Drug Design for Human Gastric Cancer." International Journal for Research in Applied Science and Engineering Technology 11, no. 10 (2023): 1106–14. http://dx.doi.org/10.22214/ijraset.2023.56165.
Pełny tekst źródłaNguyen, Thanh-Phuong, Laura Caberlotto, Melissa J. Morine, and Corrado Priami. "Network Analysis of Neurodegenerative Disease Highlights a Role of Toll-Like Receptor Signaling." BioMed Research International 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/686505.
Pełny tekst źródłaRamly, Balqis, Nor Afiqah-Aleng, and Zeti-Azura Mohamed-Hussein. "Protein–Protein Interaction Network Analysis Reveals Several Diseases Highly Associated with Polycystic Ovarian Syndrome." International Journal of Molecular Sciences 20, no. 12 (2019): 2959. http://dx.doi.org/10.3390/ijms20122959.
Pełny tekst źródłaPeng, Yunhui, Emil Alexov, and Sankar Basu. "Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases." International Journal of Molecular Sciences 20, no. 3 (2019): 548. http://dx.doi.org/10.3390/ijms20030548.
Pełny tekst źródłaBastos, Paulo, Antónia Vlahou, Adelino Leite-Moreira, Lúcio Lara-Santos, Rita Ferreira, and Rui Vitorino. "Deciphering the disease-related molecular networks using urine proteomics." Trends in Analytical Chemistry 94 (September 1, 2017): 200–209. https://doi.org/10.1016/j.trac.2017.07.018.
Pełny tekst źródłaAl-Suhaimi, Ebtesam, Vijaya Ravinayagam, B. Rabindran Jermy, Tarhini Mohamad, and Abdelhamid Elaissari. "Protein/ Hormone Based Nanoparticles as Carriers for Drugs Targeting Protein-Protein Interactions." Current Topics in Medicinal Chemistry 19, no. 6 (2019): 444–56. http://dx.doi.org/10.2174/1568026619666190304152320.
Pełny tekst źródłaZhao, Jian-Hua, Hsuan-Liang Liu, Hsin-Yi Lin, et al. "Chemical Chaperone and Inhibitor Discovery: Potential Treatments for Protein Conformational Diseases." Perspectives in Medicinal Chemistry 1 (January 2007): PMC.S212. http://dx.doi.org/10.4137/pmc.s212.
Pełny tekst źródłaYang, Qiya, Xi Zhang, Dhanasekaran Solairaj, Rouling Lin, Kaili Wang, and Hongyin Zhang. "TMT-Based Proteomic Analysis of Hannaella sinensis-Induced Apple Resistance-Related Proteins." Foods 12, no. 14 (2023): 2637. http://dx.doi.org/10.3390/foods12142637.
Pełny tekst źródłaLe, Vu Anh, Cam Quyen Thi Phan, and Thuy Huong Nguyen. "Data mining in mass spectrometry-based proteomics studies." Science & Technology Development Journal - Engineering and Technology 2, no. 4 (2020): 258–76. http://dx.doi.org/10.32508/stdjet.v2i4.483.
Pełny tekst źródłaTang, Yi-Wei, Gary W. Procop, and David H. Persing. "Molecular diagnostics of infectious diseases." Clinical Chemistry 43, no. 11 (1997): 2021–38. http://dx.doi.org/10.1093/clinchem/43.11.2021.
Pełny tekst źródłaSitkov, N. O., T. M. Zimina, V. V. Luchinin, et al. "Hybrid-Integrated Biosensor for Express Determination of Protein Markers of Diseases based on Molecular Recognition and Direct Fluorimetric Detection." Nano- i Mikrosistemnaya Tehnika 23, no. 6 (2021): 326–32. http://dx.doi.org/10.17587/nmst.23.326-332.
Pełny tekst źródłaWang, Li, and Nanbert Zhong. "Application of the ProteomeLab™ PF2D protein fractionation system in proteomic analysis for human genetic diseases." Open Chemistry 10, no. 3 (2012): 836–43. http://dx.doi.org/10.2478/s11532-012-0033-2.
Pełny tekst źródłaXiao, Hanyu, Yijin Zou, Jieqiong Wang, and Shibiao Wan. "A Review for Artificial Intelligence Based Protein Subcellular Localization." Biomolecules 14, no. 4 (2024): 409. http://dx.doi.org/10.3390/biom14040409.
Pełny tekst źródłaSingh, Om V. "Protein-misfolding diseases and the paradigm of proteomics-based therapeutic targets." Expert Review of Proteomics 7, no. 4 (2010): 463–64. http://dx.doi.org/10.1586/epr.10.71.
Pełny tekst źródłaLindquist, Susan, Sylvia Krobitsch, Liming Li, and Neal Sondheimer. "Investigating protein conformation–based inheritance and disease in yeast." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356, no. 1406 (2001): 169–76. http://dx.doi.org/10.1098/rstb.2000.0762.
Pełny tekst źródłaNevzglyadova, O. V., E. V. Mikhailova, and T. R. Soidla. "Molecular Mechanisms Underlying Alzheimer’s and Parkinson’s Diseases and the Potential Possibility of their Neutralization." Цитология 65, no. 4 (2023): 323–38. http://dx.doi.org/10.31857/s0041377123040090.
Pełny tekst źródłaGadhave, Kundlik, Prateek Kumar, Shivani Kapuganti, Vladimir Uversky, and Rajanish Giri. "Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases." Biomolecules 10, no. 5 (2020): 796. http://dx.doi.org/10.3390/biom10050796.
Pełny tekst źródłaChen, Mingzhu, Yizi Zhu, Huajun Li, Yubo Zhang, and Mei Han. "A Quantitative Proteomic Approach Explores the Possible Mechanisms by Which the Small Molecule Stemazole Promotes the Survival of Human Neural Stem Cells." Brain Sciences 12, no. 6 (2022): 690. http://dx.doi.org/10.3390/brainsci12060690.
Pełny tekst źródłaHuang, Zhaohong, Xinyue Cui, Yuhao Xia, Kailong Zhao, and Guijun Zhang. "Pathfinder: Protein folding pathway prediction based on conformational sampling." PLOS Computational Biology 19, no. 9 (2023): e1011438. http://dx.doi.org/10.1371/journal.pcbi.1011438.
Pełny tekst źródłaRao, V. Srinivasa, K. Srinivas, G. N. Sujini, and G. N. Sunand Kumar. "Protein-Protein Interaction Detection: Methods and Analysis." International Journal of Proteomics 2014 (February 17, 2014): 1–12. http://dx.doi.org/10.1155/2014/147648.
Pełny tekst źródłaDzieciatkowska, Monika, Guihong Qi, Jinsam You, et al. "Proteomic Characterization of Cerebrospinal Fluid from Ataxia-Telangiectasia (A-T) Patients Using a LC/MS-Based Label-Free Protein Quantification Technology." International Journal of Proteomics 2011 (June 23, 2011): 1–13. http://dx.doi.org/10.1155/2011/578903.
Pełny tekst źródłaTiwari, Kunal, Rahul Saxena, and Dr Sarika Saxena. "MOLECULAR TECHNIQUES ADOPTED AGAINST SARS-COV-2 IN VACCINE DEVELOPMENT." International Journal of Engineering Applied Sciences and Technology 6, no. 6 (2021): 197–206. http://dx.doi.org/10.33564/ijeast.2021.v06i06.028.
Pełny tekst źródłaWojtasińska, Armanda, Joanna Kućmierz, Julita Tokarek, et al. "New Insights into Cardiovascular Diseases Treatment Based on Molecular Targets." International Journal of Molecular Sciences 24, no. 23 (2023): 16735. http://dx.doi.org/10.3390/ijms242316735.
Pełny tekst źródłaKumaran, Poojitha. "Molecular docking analysis of Indole based oxadiazoles with the H-binding protein from Treponema denticola." Bioinformation 19, no. 1 (2023): 79–84. http://dx.doi.org/10.6026/97320630019084.
Pełny tekst źródłaSharma, Maneesha, Anu Bansal, Shikha Suman, and Neeta Raj Sharma. "Potential Alphavirus Inhibitors From Phytocompounds – Molecular Docking and Dynamics Based Approach." Innovative Biosystems and Bioengineering 7, no. 3 (2023): 21–31. http://dx.doi.org/10.20535/ibb.2023.7.3.285245.
Pełny tekst źródłaEspay, Alberto J., Joaquin A. Vizcarra, Luca Marsili, et al. "Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases." Neurology 92, no. 7 (2019): 329–37. http://dx.doi.org/10.1212/wnl.0000000000006926.
Pełny tekst źródłaMazanetz, Michael P., Ian M. Withers, Charles A. Laughton та Peter M. Fischer. "Exploiting glycogen synthase kinase 3β flexibility in molecular recognition". Biochemical Society Transactions 36, № 1 (2008): 55–58. http://dx.doi.org/10.1042/bst0360055.
Pełny tekst źródłaYslam, Kyyasovich Orazov. "TAU PROTEIN DETECTION BY USING DEVELOPED MICROTUBULE-KINESIN SYSTEM." International Journal of Multidisciplinary Research Transactions 5, no. 4 (2023): 158–59. https://doi.org/10.5281/zenodo.7783080.
Pełny tekst źródłaOpo, F. A. Dain Md, Saleh Alkarim, Ghadeer I. Alrefaei, et al. "Pharmacophore-Model-Based Virtual-Screening Approaches Identified Novel Natural Molecular Candidates for Treating Human Neuroblastoma." Current Issues in Molecular Biology 44, no. 10 (2022): 4838–58. http://dx.doi.org/10.3390/cimb44100329.
Pełny tekst źródłaBertsch, Uwe, Konstanze F. Winklhofer, Thomas Hirschberger, et al. "Systematic Identification of Antiprion Drugs by High-Throughput Screening Based on Scanning for Intensely Fluorescent Targets." Journal of Virology 79, no. 12 (2005): 7785–91. http://dx.doi.org/10.1128/jvi.79.12.7785-7791.2005.
Pełny tekst źródłaAli, Yasir, Hina Imtiaz, Muhammad Mutaal Tahir, et al. "Fragment-Based Approaches Identified Tecovirimat-Competitive Novel Drug Candidate for Targeting the F13 Protein of the Monkeypox Virus." Viruses 15, no. 2 (2023): 570. http://dx.doi.org/10.3390/v15020570.
Pełny tekst źródłaBerdnikova, Daria V., Paolo Carloni, Sybille Krauß, and Giulia Rossetti. "Role and Perspective of Molecular Simulation-Based Investigation of RNA–Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding." Molecules 26, no. 11 (2021): 3384. http://dx.doi.org/10.3390/molecules26113384.
Pełny tekst źródłaKirkegaard, Thomas. "Development of heat shock protein based therapies for lysosomal diseases." Molecular Genetics and Metabolism 117, no. 2 (2016): S68. http://dx.doi.org/10.1016/j.ymgme.2015.12.322.
Pełny tekst źródłaPapa, Guido, Alexander Borodavka, and Ulrich Desselberger. "Viroplasms: Assembly and Functions of Rotavirus Replication Factories." Viruses 13, no. 7 (2021): 1349. http://dx.doi.org/10.3390/v13071349.
Pełny tekst źródłaAmano, Atsuo, Takayuki Nakamura, Shigenobu Kimura, et al. "Molecular Interactions of Porphyromonas gingivalisFimbriae with Host Proteins: Kinetic Analyses Based on Surface Plasmon Resonance." Infection and Immunity 67, no. 5 (1999): 2399–405. http://dx.doi.org/10.1128/iai.67.5.2399-2405.1999.
Pełny tekst źródła