Gotowa bibliografia na temat „Proton exchange membrane fuel cells Heat”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Proton exchange membrane fuel cells Heat”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Proton exchange membrane fuel cells Heat"
Ramousse, Julien, Olivier Lottin, Sophie Didierjean i Denis Maillet. "Heat sources in proton exchange membrane (PEM) fuel cells". Journal of Power Sources 192, nr 2 (15.07.2009): 435–41. http://dx.doi.org/10.1016/j.jpowsour.2009.03.038.
Pełny tekst źródłaSun, Shi Mei, Yao Shi i Wei Liu. "The Efficient Thermal Management of Proton Exchange Membrane Fuel Cells". Applied Mechanics and Materials 423-426 (wrzesień 2013): 483–87. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.483.
Pełny tekst źródłaLi, Qinghe, Zhiqiang Liu, Yi Sun, Sheng Yang i Chengwei Deng. "A Review on Temperature Control of Proton Exchange Membrane Fuel Cells". Processes 9, nr 2 (27.01.2021): 235. http://dx.doi.org/10.3390/pr9020235.
Pełny tekst źródłaBapat, Chaitanya J., i Stefan T. Thynell. "Anisotropic Heat Conduction Effects in Proton-Exchange Membrane Fuel Cells". Journal of Heat Transfer 129, nr 9 (26.07.2006): 1109–18. http://dx.doi.org/10.1115/1.2712478.
Pełny tekst źródłaLiu, Jia Xing, Hang Guo, Fang Ye, De Cai Qiu i Chong-Fang Ma. "INTERFACIAL PHENOMENA AND HEAT TRANSFER IN PROTON EXCHANGE MEMBRANE FUEL CELLS". Interfacial Phenomena and Heat Transfer 3, nr 3 (2015): 259–301. http://dx.doi.org/10.1615/interfacphenomheattransfer.2016014779.
Pełny tekst źródłaWang, Qianqian, Bing Li, Daijun Yang, Haifeng Dai, Jim P. Zheng, Pingwen Ming i Cunman Zhang. "Research progress of heat transfer inside proton exchange membrane fuel cells". Journal of Power Sources 492 (kwiecień 2021): 229613. http://dx.doi.org/10.1016/j.jpowsour.2021.229613.
Pełny tekst źródłaSun, Shi Mei, Wei Liu i Shi Yao. "Thermal Simulation of Cooling Channels in Proton Exchange Membrane Fuel Cell". Applied Mechanics and Materials 423-426 (wrzesień 2013): 2091–97. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.2091.
Pełny tekst źródłaCho, Son Ah, Pil Hyong Lee, Sang Seok Han i Sang Soon Hwang. "Heat transport characteristics of flow fields in proton exchange membrane fuel cells". Journal of Power Sources 178, nr 2 (kwiecień 2008): 692–98. http://dx.doi.org/10.1016/j.jpowsour.2007.09.057.
Pełny tekst źródłaNguyen, Trung V., i Ralph E. White. "A Water and Heat Management Model for Proton‐Exchange‐Membrane Fuel Cells". Journal of The Electrochemical Society 140, nr 8 (1.08.1993): 2178–86. http://dx.doi.org/10.1149/1.2220792.
Pełny tekst źródłaDas, Sarit K., i Annasaheb S. Bansode. "Heat and Mass Transport in Proton Exchange Membrane Fuel Cells—A Review". Heat Transfer Engineering 30, nr 9 (sierpień 2009): 691–719. http://dx.doi.org/10.1080/01457630802677997.
Pełny tekst źródłaRozprawy doktorskie na temat "Proton exchange membrane fuel cells Heat"
Nomnqa, Myalelo Vuyisa. "Simulation and optimisation of a high temperature polymer electrolyte membrane fuel cell stack for combined heat and power". Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/880.
Pełny tekst źródłaHigh temperature polymer electrolyte membrane fuel cells (PEMFC) operating between 120-180 oC are currently of much research attention. The acid doped polybenzimidazole (PBI) membranes electrolyte are known for their tolerance to relatively high levels of carbon monoxide impurity in the feed. Most fuel cell modelling are theoretical in nature and are solved in commercial CFD platforms such as Fluent. The models require a lot of time to solve and are not simple enough to be used in complex systems such as CHP systems. This study therefore, focussed on developing a simple but yet accurate model of a high temperature PEMFC for a CHP system. A zero dimensional model for a single cell was developed and implemented in Engineering Equations Solver (EES) environment to express the cell voltage as a function of current density among others. Experimental results obtained from literature were used to validate and improve on the model. The validated models were employed for the simulation of the stack performance to investigate the effects of temperature, pressure, anode stoichiometry and the level of CO impurity in the synthesis gas, on the cell potential and overall performance. Good agreement was obtained from the simulation results and experimental data. The results showed that increasing temperature (up to 180oC) and acid doping level have positive effects on the cell performance. The results also show that the cell can operate with a reformate gas containing up to 2% CO without significant loss of cell voltage at elevated temperatures. The single cell model was extended to a 1 kWe high temperature PEMFC stack and micro-CHP system. The stacks model was validated with experimental data obtained from a test station. The model was used to investigate the performance of PEMFC and CHP system by using uncertainty propagation. The highest combined cogeneration system efficiency of 87.3% is obtained with the corresponding electrical and thermal efficiencies are 41.3% and 46 % respectively. The proposed fuel processing subsystem provides an adequate rate of CH4 conversion and acceptable CO-level, making it appropriate for integration with an HT PEMFC stack. In the steam methane reformer 97% of CH4 conversion is achieved and the water gas shift reactors achieve about 98% removal of CO.
Radhakrishnan, Arjun. "Thermal conductivity measurement of gas diffusion layer used in PEMFC /". Online version of thesis, 2009. http://hdl.handle.net/1850/10839.
Pełny tekst źródłaAlan, Dunlavy Choe Song-Yul. "Dynamic modeling of two-phase heat and vapor transfer characteristics in a gas-to-gas membrane humidifier for use in automotive PEM fuel cells". Auburn, Ala., 2009. http://hdl.handle.net/10415/1951.
Pełny tekst źródłaNomnqa, Myalelo Vuyisa. "Design of a domestic high temperature proton exchange membrane fuel cell cogeneration system : modelling and optimisation". Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2574.
Pełny tekst źródłaFuel cells are among power generation technologies that have been proven to reduce greenhouse gas emissions. They have the potential of being one of the most widely used technologies of the 21st century, replacing conventional technologies such as gas turbines in stationary power supplies, internal combustion engines in transport applications and the lithium-ion battery in portable power applications. This research project concentrates on the performance analysis of a micro-cogeneration system based on a high temperatureproton exchange membrane (HT-PEM) fuel cell through modelling and parametric analysis. A model of a 1kWe micro-cogeneration system that consists of a HT-PEM fuel cell, a methane steam reformer (MSR) reactor, a water-gas-shift (WGS) reactor, heat exchangers and an inverter was developed. The model is coded/implemented in gPROMS Model Builder, an equation oriented modelling platform. The models predictions for the HTPEM fuel cell, MSR and WGS, and the whole system were validated against experimental and numerical results from literature. The validation showed that the HT-PEM fuel cell model was able to predict the performance of a 1kWe fuel cell stack with an error of less than 6.4%. The system model is rstly used in a thermodynamic analysis of the fuel processor for a methane steam reforming process and investigated in terms of carbon monoxide produced. The combustor fuel and equivalence ratios were shown to be critical decision variables to be considered in order to keep the carbon monoxide from the fuel processor at acceptable levels for the fuel cell stack.
Ntsendwana, Bulelwa. "Advanced low temperature metal hydride materials for low temperature proton exchange membrane fuel cell application". Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8494_1307431585.
Pełny tekst źródłaEnergy is one of the basic needs of human beings and is extremely crucial for continued development of human life. Our work, leisure and our economic, social and physical welfare all depend on the sufficient, uninterrupted supply of energy. Therefore, it is essential to provide adequate and affordable energy for improving human welfare and raising living standards. Global concern over environmental climate change linked to fossil fuel consumption has increased pressure to generate power from renewable sources [1]. Although substantial advances in renewable energy technologies have been made, significant challenges remain in developing integrated renewable energy systems due primarily to mismatch between load demand and source capabilities [2]. The output from renewable energy sources such as photo-voltaic, wind, tidal, and micro-hydro fluctuate on an hourly, daily, and seasonal basis. As a result, these devices are not well suited for directly powering loads that require a uniform and uninterrupted supply of input energy.
McGee, Seán. "Thermal energy management and chemical reaction investigation of micro-proton exchange membrane fuel cell and fuel cell system using finite element modelling". Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173001.
Pełny tekst źródłaTichagwa, Anesu. "Micro combined heat and power management for a residential system". Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16914.
Pełny tekst źródłaIon, Mihaela Florentina. "Proton transport in proton exchange membrane fuel cells /". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164514.
Pełny tekst źródłaErgun, Dilek. "High Temperature Proton Exchange Membrane Fuel Cells". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610803/index.pdf.
Pełny tekst źródłathe objective is to develop a high temperature proton exchange membrane fuel cell. Phosphoric acid doped polybenzimidazole membrane was chosen as the electrolyte material. Polybenzimidazole was synthesized with different molecular weights (18700-118500) by changing the synthesis conditions such as reaction time (18-24h) and temperature (185-200oC). The formation of polybenzimidazole was confirmed by FTIR, H-NMR and elemental analysis. The synthesized polymers were used to prepare homogeneous membranes which have good mechanical strength and high thermal stability. Phosphoric acid doped membranes were used to prepare membrane electrode assemblies. Dry hydrogen and oxygen gases were fed to the anode and cathode sides of the cell respectively, at a flow rate of 0.1 slpm for fuel cell tests. It was achieved to operate the single cell up to 160oC. The observed maximum power output was increased considerably from 0.015 W/cm2 to 0.061 W/cm2 at 150oC when the binder of the catalyst was changed from polybenzimidazole to polybenzimidazole and polyvinylidene fluoride mixture. The power outputs of 0.032 W/cm2 and 0.063 W/cm2 were obtained when the fuel cell operating temperatures changed as 125oC and 160oC respectively. The single cell test presents 0.035 W/cm2 and 0.070 W/cm2 with membrane thicknesses of 100 µ
m and 70 µ
m respectively. So it can be concluded that thinner membranes give better performances at higher temperatures.
Oyarce, Alejandro. "Electrode degradation in proton exchange membrane fuel cells". Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133437.
Pełny tekst źródłaDenna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena.
QC 20131104
Książki na temat "Proton exchange membrane fuel cells Heat"
Albarbar, Alhussein, i Mohmad Alrweq. Proton Exchange Membrane Fuel Cells. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70727-3.
Pełny tekst źródłaGao, Fei. Proton exchange membrane fuel cells modeling. London: ISTE, 2011.
Znajdź pełny tekst źródłaGao, Fei, Benjamin Blunier i Abdellatif Miraoui, red. Proton Exchange Membrane Fuel Cells Modeling. Hoboken, NJ USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118562079.
Pełny tekst źródłaLi, Hui. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaLi, Hui. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaJemeï, Samir. Hybridization, Diagnostic and Prognostic of Proton Exchange Membrane Fuel Cells. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119563426.
Pełny tekst źródłaInternational Symposium on Proton Conducting Membrane Fuel Cells (2nd 1998). Proton conducting membrane fuel cells II: Proceedings of the Second International Symposium on Proton Conducting Membrane Fuel Cells II. Redaktorzy Gottesfeld Shimshon, Fuller Thomas Francis, Electrochemical Society. Energy technology Division., Electrochemical Society Battery Division i Electrochemical Society. Physical Electrochemistry Division. Pennington, New Jersey: Electrochemical Society, Inc., 1999.
Znajdź pełny tekst źródłaHerring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.
Znajdź pełny tekst źródłaHerring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.
Znajdź pełny tekst źródłaHerring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Proton exchange membrane fuel cells Heat"
Larminie, James, i Andrew Dicks. "Proton Exchange Membrane Fuel Cells". W Fuel Cell Systems Explained, 67–119. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118878330.ch4.
Pełny tekst źródłaAricò, Antonino S., Vincenzo Baglio, Nicola Briguglio, Gaetano Maggio i Stefania Siracusano. "Proton Exchange Membrane Water Electrolysis". W Fuel Cells : Data, Facts and Figures, 343–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA., 2016. http://dx.doi.org/10.1002/9783527693924.ch34.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Introduction and Background". W Proton Exchange Membrane Fuel Cells, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_1.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Proton Exchange Membrane Fuel Cells: Review". W Proton Exchange Membrane Fuel Cells, 9–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_2.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Design and Fundamental Characteristics of PEM Fuel Cells". W Proton Exchange Membrane Fuel Cells, 31–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_3.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Failure Modes and Mechanisms". W Proton Exchange Membrane Fuel Cells, 59–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_4.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Mathematical Modelling and Numerical Simulation". W Proton Exchange Membrane Fuel Cells, 77–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_5.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Experimental Set-Up, Results and Data Analysis". W Proton Exchange Membrane Fuel Cells, 101–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_6.
Pełny tekst źródłaAlbarbar, Alhussein, i Mohmad Alrweq. "Guide to Modelling and Simulation". W Proton Exchange Membrane Fuel Cells, 125–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_7.
Pełny tekst źródłaZhang, Junliang, i Shuiyun Shen. "Proton Exchange Membrane Fuel Cells (PEMFCs)". W Energy and Environment Research in China, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-56070-9_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Proton exchange membrane fuel cells Heat"
Tenson, Tino Joe, i Rajesh Baby. "PERFORMANCE EVALUATION AND OPTIMIZATION OF PROTON EXCHANGE MEMBRANE FUEL CELLS". W Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihmtc-2017.3060.
Pełny tekst źródłaDjilali, N., i T. Berning. "Computational Modelling and Simulation of Proton-Exchange Membrane Fuel Cells (Keynote)". W ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1560.
Pełny tekst źródłaYuan, Jinliang, Masoud Rokni i Bengt Sunden. "Fluid Flow and Heat Transfer Analysis for Proton Exchange Membrane Fuel Cells". W 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3089.
Pełny tekst źródłaGuo, Hang, Chong Fang Ma, Mao Hai Wang, Jian Yu, Xuan Liu, Fang Ye i Chao Yang Wang. "Heat and Mass Transfer and Two Phase Flow in Hydrogen Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cells". W ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1755.
Pełny tekst źródłaStockie, John M. "Multi-Phase Flow and Condensation in Proton Exchange Membrane Fuel Cells". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32539.
Pełny tekst źródłaBerning, Torsten. "A Numerical Investigation of Heat and Mass Transfer in Air-Cooled Proton Exchange Membrane Fuel Cells". W ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5419.
Pełny tekst źródłaFarber, Aaron M., i Pei-Wen Li. "Analysis and Optimization Design of Proton-Exchange-Membrane Electrolysis Cell". W ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85081.
Pełny tekst źródłaTokarz, C., i Greg Naterer. "Ohmic Heating and Thermochemical Irreversibilities in a Proton Exchange Membrane Fuel Cell". W 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3396.
Pełny tekst źródłaIto, Takamasa, Jinliang Yuan i Bengt Sunde´n. "Analysis of Intercooler in PEM Fuel Cell Systems". W ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56587.
Pełny tekst źródłaMagistri, L., A. Traverso, A. F. Massardo i R. K. Shah. "Heat Exchangers for Fuel Cell and Hybrid System Applications". W ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74176.
Pełny tekst źródłaRaporty organizacyjne na temat "Proton exchange membrane fuel cells Heat"
Weisbrod, K. R., N. E. Vanderborgh i S. A. Grot. Modeling of gaseous flows within proton exchange membrane fuel cells. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/460311.
Pełny tekst źródłaShamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), czerwiec 2002. http://dx.doi.org/10.2172/825378.
Pełny tekst źródłaShamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), styczeń 2000. http://dx.doi.org/10.2172/778369.
Pełny tekst źródłaShamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), lipiec 2001. http://dx.doi.org/10.2172/825377.
Pełny tekst źródłaShamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), kwiecień 2003. http://dx.doi.org/10.2172/821855.
Pełny tekst źródłaLvov, S. N., H. R. Allcock, X. Y. Zhou, M. A. Hofmann, E. Chalkova, M. V. Fedkin, J. A. Weston i C. M. Ambler. High temperature direct methanal-fuel proton exchange membrane fuel cells. Final report. Office of Scientific and Technical Information (OSTI), październik 2001. http://dx.doi.org/10.2172/820976.
Pełny tekst źródłaGeorge Marchetti. Interim report re: component parts for proton-exchange membrane fuel cells. Office of Scientific and Technical Information (OSTI), październik 1999. http://dx.doi.org/10.2172/761769.
Pełny tekst źródłaDhar, H. P., J. H. Lee i K. A. Lewinski. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/460298.
Pełny tekst źródłaBeckert, Werner F., Ottmar H. Dengel, Robert D. Lynch, Gary T. Bowman i Aaron J. Greso. Solid Hydride Hydrogen Source for Small Proton Exchange Membrane (PEM) Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, maj 1997. http://dx.doi.org/10.21236/ada371137.
Pełny tekst źródłaPratt, Joesph W., Leonard E. Klebanoff, Karina Munoz-Ramos, Abbas A. Akhil, Dita B. Curgus i Benjamin L. Schenkman. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes. Office of Scientific and Technical Information (OSTI), maj 2011. http://dx.doi.org/10.2172/1219354.
Pełny tekst źródła