Rozprawy doktorskie na temat „Proton exchange membrane fuel cells Heat”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Proton exchange membrane fuel cells Heat”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Nomnqa, Myalelo Vuyisa. "Simulation and optimisation of a high temperature polymer electrolyte membrane fuel cell stack for combined heat and power". Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/880.
Pełny tekst źródłaHigh temperature polymer electrolyte membrane fuel cells (PEMFC) operating between 120-180 oC are currently of much research attention. The acid doped polybenzimidazole (PBI) membranes electrolyte are known for their tolerance to relatively high levels of carbon monoxide impurity in the feed. Most fuel cell modelling are theoretical in nature and are solved in commercial CFD platforms such as Fluent. The models require a lot of time to solve and are not simple enough to be used in complex systems such as CHP systems. This study therefore, focussed on developing a simple but yet accurate model of a high temperature PEMFC for a CHP system. A zero dimensional model for a single cell was developed and implemented in Engineering Equations Solver (EES) environment to express the cell voltage as a function of current density among others. Experimental results obtained from literature were used to validate and improve on the model. The validated models were employed for the simulation of the stack performance to investigate the effects of temperature, pressure, anode stoichiometry and the level of CO impurity in the synthesis gas, on the cell potential and overall performance. Good agreement was obtained from the simulation results and experimental data. The results showed that increasing temperature (up to 180oC) and acid doping level have positive effects on the cell performance. The results also show that the cell can operate with a reformate gas containing up to 2% CO without significant loss of cell voltage at elevated temperatures. The single cell model was extended to a 1 kWe high temperature PEMFC stack and micro-CHP system. The stacks model was validated with experimental data obtained from a test station. The model was used to investigate the performance of PEMFC and CHP system by using uncertainty propagation. The highest combined cogeneration system efficiency of 87.3% is obtained with the corresponding electrical and thermal efficiencies are 41.3% and 46 % respectively. The proposed fuel processing subsystem provides an adequate rate of CH4 conversion and acceptable CO-level, making it appropriate for integration with an HT PEMFC stack. In the steam methane reformer 97% of CH4 conversion is achieved and the water gas shift reactors achieve about 98% removal of CO.
Radhakrishnan, Arjun. "Thermal conductivity measurement of gas diffusion layer used in PEMFC /". Online version of thesis, 2009. http://hdl.handle.net/1850/10839.
Pełny tekst źródłaAlan, Dunlavy Choe Song-Yul. "Dynamic modeling of two-phase heat and vapor transfer characteristics in a gas-to-gas membrane humidifier for use in automotive PEM fuel cells". Auburn, Ala., 2009. http://hdl.handle.net/10415/1951.
Pełny tekst źródłaNomnqa, Myalelo Vuyisa. "Design of a domestic high temperature proton exchange membrane fuel cell cogeneration system : modelling and optimisation". Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2574.
Pełny tekst źródłaFuel cells are among power generation technologies that have been proven to reduce greenhouse gas emissions. They have the potential of being one of the most widely used technologies of the 21st century, replacing conventional technologies such as gas turbines in stationary power supplies, internal combustion engines in transport applications and the lithium-ion battery in portable power applications. This research project concentrates on the performance analysis of a micro-cogeneration system based on a high temperatureproton exchange membrane (HT-PEM) fuel cell through modelling and parametric analysis. A model of a 1kWe micro-cogeneration system that consists of a HT-PEM fuel cell, a methane steam reformer (MSR) reactor, a water-gas-shift (WGS) reactor, heat exchangers and an inverter was developed. The model is coded/implemented in gPROMS Model Builder, an equation oriented modelling platform. The models predictions for the HTPEM fuel cell, MSR and WGS, and the whole system were validated against experimental and numerical results from literature. The validation showed that the HT-PEM fuel cell model was able to predict the performance of a 1kWe fuel cell stack with an error of less than 6.4%. The system model is rstly used in a thermodynamic analysis of the fuel processor for a methane steam reforming process and investigated in terms of carbon monoxide produced. The combustor fuel and equivalence ratios were shown to be critical decision variables to be considered in order to keep the carbon monoxide from the fuel processor at acceptable levels for the fuel cell stack.
Ntsendwana, Bulelwa. "Advanced low temperature metal hydride materials for low temperature proton exchange membrane fuel cell application". Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8494_1307431585.
Pełny tekst źródłaEnergy is one of the basic needs of human beings and is extremely crucial for continued development of human life. Our work, leisure and our economic, social and physical welfare all depend on the sufficient, uninterrupted supply of energy. Therefore, it is essential to provide adequate and affordable energy for improving human welfare and raising living standards. Global concern over environmental climate change linked to fossil fuel consumption has increased pressure to generate power from renewable sources [1]. Although substantial advances in renewable energy technologies have been made, significant challenges remain in developing integrated renewable energy systems due primarily to mismatch between load demand and source capabilities [2]. The output from renewable energy sources such as photo-voltaic, wind, tidal, and micro-hydro fluctuate on an hourly, daily, and seasonal basis. As a result, these devices are not well suited for directly powering loads that require a uniform and uninterrupted supply of input energy.
McGee, Seán. "Thermal energy management and chemical reaction investigation of micro-proton exchange membrane fuel cell and fuel cell system using finite element modelling". Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173001.
Pełny tekst źródłaTichagwa, Anesu. "Micro combined heat and power management for a residential system". Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16914.
Pełny tekst źródłaIon, Mihaela Florentina. "Proton transport in proton exchange membrane fuel cells /". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164514.
Pełny tekst źródłaErgun, Dilek. "High Temperature Proton Exchange Membrane Fuel Cells". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610803/index.pdf.
Pełny tekst źródłathe objective is to develop a high temperature proton exchange membrane fuel cell. Phosphoric acid doped polybenzimidazole membrane was chosen as the electrolyte material. Polybenzimidazole was synthesized with different molecular weights (18700-118500) by changing the synthesis conditions such as reaction time (18-24h) and temperature (185-200oC). The formation of polybenzimidazole was confirmed by FTIR, H-NMR and elemental analysis. The synthesized polymers were used to prepare homogeneous membranes which have good mechanical strength and high thermal stability. Phosphoric acid doped membranes were used to prepare membrane electrode assemblies. Dry hydrogen and oxygen gases were fed to the anode and cathode sides of the cell respectively, at a flow rate of 0.1 slpm for fuel cell tests. It was achieved to operate the single cell up to 160oC. The observed maximum power output was increased considerably from 0.015 W/cm2 to 0.061 W/cm2 at 150oC when the binder of the catalyst was changed from polybenzimidazole to polybenzimidazole and polyvinylidene fluoride mixture. The power outputs of 0.032 W/cm2 and 0.063 W/cm2 were obtained when the fuel cell operating temperatures changed as 125oC and 160oC respectively. The single cell test presents 0.035 W/cm2 and 0.070 W/cm2 with membrane thicknesses of 100 µ
m and 70 µ
m respectively. So it can be concluded that thinner membranes give better performances at higher temperatures.
Oyarce, Alejandro. "Electrode degradation in proton exchange membrane fuel cells". Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133437.
Pełny tekst źródłaDenna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena.
QC 20131104
Shi, Jinjun. "Composite Membranes for Proton Exchange Membrane Fuel Cells". Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1214964058.
Pełny tekst źródłaXiao, Zhiyong. "Monolithic integration of proton exchange membrane microfuel cells /". View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20XIAO.
Pełny tekst źródłaEinsla, Brian Russel. "High Temperature Polymers for Proton Exchange Membrane Fuel Cells". Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27320.
Pełny tekst źródłaPh. D.
DeLashmutt, Timothy E. "Modeling a proton exchange membrane fuel cell stack". Ohio : Ohio University, 2008. http://www.ohiolink.edu/etd/view.cgi?ohiou1227224687.
Pełny tekst źródłaMarani, Debora. "Development of hybrid proton-conducting polymers for proton exchange membrane fuel cells". Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11002.
Pełny tekst źródłaMaasdorp, Lynndle Caroline. "Temperature proton exchange membrane fuel cells in a serpentine design". Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1316_1307961639.
Pełny tekst źródłaThe aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical methods which is classified as computational fluid dynamics and implementing the work in a commercial computational fluid dynamics package, FLUENT. The focus of my work is to study the thermal distribution within this segment. The results of the work aid in a better understanding of the fuel cell operation in this temperature range. At the time of my investigation experimental results were unavailable for validation and therefore my results are compared to previously published results published. The outcome of the results corresponds to this, where the current flux density increases with the increasing of operating temperature and fixed operating voltage and the temperature variation across the fuel cell at varying operating voltages. It is in the anticipation of determining actual and or unique material input parameters that this work is done and at which point this studies results would contribute to the understanding high temperature PEM fuel cell thermal behaviour, significantly.
Pasricha, Sandip. "Modeling and Transient Degradation of Proton Exchange Membrane Fuel Cells". Thesis, Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/pasricha/PasrichaS0506.pdf.
Pełny tekst źródłaZhang, Jingxin. "Investigation of CO tolerance in proton exchange membrane fuel cells". Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0708104-193007/.
Pełny tekst źródłaChoi, Jonghyun. "Nanofiber Network Composite Membranes for Proton Exchange Membrane Fuel Cells". Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1260461818.
Pełny tekst źródłaParikh, Harshil R. "Modeling and analysis of proton exchange membrane fuel cell". Ohio : Ohio University, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1088438486.
Pełny tekst źródłaJia, Nengyou. "Electrochemistry of proton-exchange-membrane electrolyte fuel cell (PEMFC) electrodes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0019/MQ54898.pdf.
Pełny tekst źródłaPrimucci, Mauricio. "Experimental characterization and diagonosis tools for proton exchange membrane fuel cells". Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/96767.
Pełny tekst źródłaUna pila de combustible es un dispositivo que da energía eléctrica a partir de reacciones electroquímicas de reducción y oxidación. Las pilas del tipo PEMFC presentan propiedades que las hacen adecuadas para aplicaciones de transporte: alta eficiencia, cero emisiones, electrolito sólido, bajas temperaturas de operación y alta densidad de potencia. Sin embargo, algunos problemas técnicos deben ser estudiados: la durabilidad de los materiales y la correcta selección de las condiciones de funcionamiento. Una de las más importantes es la gestión del agua. Un balance adecuado del agua en la pila es necesario para maximizar la eficiencia de la PEMFC reduciendo al mínimo las pérdidas de tensión. El contenido de agua en la PEMFC viene dado por su generación en el cátodo debido a la reacción, la humedad de los gases de entrada y el transporte de agua a través de la membrana. La tesis estudia, propone y compara los diferentes métodos de caracterización experimental con el objetivo de obtener indicadores del estado del agua en la PEMFC. Se realiza un uso sistemático de la técnica “espectroscopía de impedancia electroquímica (EIS)” y el análisis de la influencia de las diferentes condiciones de operación sobre la respuesta de la PEMFC. Las variables estudiadas son: corriente de carga, presión de los gases, temperatura, humedad relativa y también la alimentación de los gases de entrada: H2/O2 y H2/aire. Se presenta un conjunto de características relevantes de la respuesta del EIS y se usan para dar valores iniciales a los circuitos equivalentes. Se estudian diferentes configuraciones de circuitos equivalentes y se seleccionan aquellos que tienen la mejor conexión con los datos experimentales. Se realiza un análisis de sensibilidad de los parámetros de los circuitos equivalentes con respecto a las diferentes condiciones de operación, para encontrar aquellos que sean útiles para representar estas variaciones. Se propone una nueva técnica experimental de caracterización, basada en la interrupción de la humidificación de los gases de entrada. Esta técnica combina la información de la respuesta temporal con la frecuencial (EIS) y es útil para analizar la influencia del agua en la respuesta de la PEMFC. Algunas ventajas de esta técnica son: la fácil implementación física y el bajo impacto sobre la respuesta de la PEMFC, lo cual convierte esta técnica en candidata para ser utilizada “In-situ”. Se proponen tres conjuntos de indicadores de comportamiento de la pila como herramientas de diagnosis. En primer lugar, se presentan las “Características Relevantes” de la respuesta de la EIS que dan un diagnóstico del estado interno de la PEMFC. De entre ellas se selecciona como indicadas: las resistencias de baja y alta frecuencia (RLF y RHF) y la frecuencia del máximo de fase. Estas características sirven para determinar la correcta humidificación de la pila en las condiciones actuales de operación. El cátodo está correctamente humidificado si la respuesta de las características, muestran que la zona definida por RLF bajando, RHF subiendo ligeramente y la frecuencia de la máxima fase está subiendo, es mínima. En segundo lugar, se usan los “Circuitos Equivalentes” para dar una interpretación física a los indicadores. Los parámetros seleccionados son: la resistencia de la membrana, Rm, la resistencia y la constante de tiempo de la difusión (Rw y Tw). En este caso, la humidificación correcta del cátodo ocurre cuando la zona donde Rw y Tw bajan y Rm sube ligeramente, es mínima. Por ultimo, se proponen indicadores de comportamiento utilizando un modelo: Rm, coeficiente de difusión efectivo, Deff y el área activa efectiva, Aeff. La humidificación óptima del cátodo ocurre cuando la zona donde Deff es estable y Rm no cambia significativamente, es mínima. El parámetro Aeff es útil para estimar el área activa efectiva aun cuando no se realice una interrupción de humidificación y para comparar la respuesta de la PEMFC bajo diferentes condiciones de operacion
Alayyaf, Abdulmajeed A. "Synthesis of Two Monomers for Proton Exchange Membrane Fuel Cells (PEMFCs)". Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etd/3015.
Pełny tekst źródłaSinger, Simcha Lev. "Low platinum loading electrospun electrodes for proton exchange membrane fuel cells". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38280.
Pełny tekst źródłaIncludes bibliographical references (p. 104-106).
An experimental study was performed to evaluate the utility of electrospun carbon nanofiber supports for sputtered platinum catalyst in proton exchange membrane fuel cells. The performance of the sputtered nanofiber supports was similar to that of sputtered commercial gas diffusion layers in single cell fuel cell tests. However, sputtered platinum electrodes performed significantly worse than commercial thin film electrodes due to high activation and concentration voltage losses. Cyclic voltammetry and rotating disc electrode experiments were performed in order to evaluate the influence of platinum loading and particle size on the electrochemical active area and oxygen reduction performance of the sputtered platinum. Active area per weight catalyst decreased with sputtering time, and the oxygen reduction activity slightly increases with increasing sputtering time. Both of these effects are thought to be due to increasing platinum particle size as sputtering time is increased.
by Simcha Lev Singer.
S.M.
Tian, Feng. "Theoretical Studies on Electrode Reactions in Proton Exchange Membrane Fuel Cells". Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1291339549.
Pełny tekst źródłaCheddie, Denver Faron. "Computational modeling of intermediate temperature proton exchange membrane (PEM) fuel cells". FIU Digital Commons, 2006. http://digitalcommons.fiu.edu/etd/2124.
Pełny tekst źródłaRezaei, Niya Seyed Mohammad. "Process modeling of impedance characteristics of proton exchange membrane fuel cells". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53653.
Pełny tekst źródłaApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Lee, Heon Joong Choe Song-Yul. "Modeling and analysis of a PEM fuel cell system for a quadruped robot". Auburn, Ala, 2009. http://hdl.handle.net/10415/1786.
Pełny tekst źródłaKwan, Siu Ming. "Zeolite-based micro fuel cells /". View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CBME%202008%20KWAN.
Pełny tekst źródłaYazaydin, Ahmet Ozgur. "Investigations Of New Horizons On H2/o2 Proton Exchange Membrane Fuel Cells". Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1054402/index.pdf.
Pełny tekst źródłanamely EAE1, AOY001, AOY002, AOY003 and AOY004 were manufactured with different methods and in different structures. A test station was built to make the performance tests. Performances of the PEMFCs were compared by comparing the voltage-current (V-i) diagrams obtained during the initial tests at 25 º
C of fuel cell and gas humidification temperatures. AOY001 showed the best performance among all PEMFCs with a current density of 77.5 mA/cm2 at 0.5 V and it was chosen for further parametric studies where the effect of different flow rates of H2 and O2 gases, gas humidification and fuel cell temperatures on the performance were investigated. It was found that increasing fuel cell and gas humidification temperatures increased the performance. Excess flow rate of reactant gases had an adverse effect on the performance. On the other hand increasing the ratio of flow rate of oxygen to hydrogen had a positive but limited effect. AOY001 delivered a maximum current density of 183 mA/cm2 at 0.5 V. The highest power obtained was 4.75 W
Yurdakul, Ahmet Ozgur. "Acid Doped Polybenzimidazole Membranes For High Temperature Proton Exchange Membrane Fuel Cells". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608506/index.pdf.
Pełny tekst źródłazgü
r Yurdakul One of the most popular candidates for high temperature PEMFC&rsquo
s is phosphoric acid doped polybenzimidazole (PBI) membrane due to its thermal and mechanical stability. In this study, high molecular weight PBI was synthesized by using PPA polymerization. The stirring rate of reaction solution was optimized to obtain high molecular weight. The inherent viscosity of polymer was measured at four points in 96 percent sulphuric acid solution at 30 degree centigrade by using an Ubbelohde viscometer. The highest average molecular weight was found as approximately 120,000 using the Mark-Houwink equation. The polymer was dissolved in N,N-dimethylacetamide at 70 degree centigrade with an ultrasonic stirrer. The membranes cast from this solution were doped with phosphoric acid solutions at different concentrations. The doping levels of the membranes were 6, 8, 10 and 11 moles phosphoric acid/PBI repeat unit. The mechanical strength of the acid doped membranes measured by tensile tests were found as 23, 16, 12 and 11 MPa, respectively. Conductivity measurements were made using the four probe technique. The membranes were placed in a conductivity cell and measurements were taken in humidity chamber with temperature and pressure control. The conductivity of membranes was measured at 110, 130 and 150 degree centigrade in both dry air and water vapor. The highest conductivity was 0.12 S/cm at 150 degree centigrade and 33 percent relative humidity for the membrane doped with 11 moles of H3PO4. The measurements showed that conductivity increased with increasing doping and humidity. Moreover, membranes had acceptable conductivity levels in dry air.
Blanco, Mauricio. "Study of selected water management strategies for proton exchange membrane fuel cells". Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/36643.
Pełny tekst źródłaChedester, R. Clint. "Transport phenomena in microchannels and proton exchange membrane assemblies of fuel cells". Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17825.
Pełny tekst źródłaRodrigues, Aida. "The effects of carbon monoxide contamination on proton-exchange membrane fuel cells". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22388.pdf.
Pełny tekst źródłaOus, Talal. "A fundamental study into the performance of proton exchange membrane fuel cells". Thesis, City University London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440687.
Pełny tekst źródłaAbaoud, Hassan Abdulaziz. "Studies on proton exchange membrane fuel cells with low platinum loading electrodes". Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422711.
Pełny tekst źródłaNdzuzo, Linathi. "Platinum based catalysts for the cathode of proton exchange membrane fuel cells". University of the Western Cape, 2018. http://hdl.handle.net/11394/6749.
Pełny tekst źródłaOxygen reduction reaction (ORR) is carried out in the cathode of the proton exchange membrane fuel cell (PEMFC) and it is known for its sluggish kinetics and the existence of two-pathway mechanism, related with the production of water and hydrogen peroxide. Nowadays, the design of novel cathode catalysts that are able to generate both high oxygen reduction currents and water as main product is a challenge since it causes an enhancement in the performance of PEMFC. Generally, these catalysts are composed of platinum nanoparticles, bearing in mind its high activity towards the ORR. However, the use of platinum means an increase in the total cost of PEMFCs due to its scarcity and high cost. This topic has been the motivation for a wide research in the field of PEMFCs during the last several years, being the main goal to design efficient and low cost catalysts for the cathode of PEMFCs. In this Master thesis project, platinum-palladium (Pt-Pd) catalysts supported on carbon black (CB), carbon nanofibers (CNF) and carbon xerogels (CX) were synthesised using methanol (MeOH), formaldehyde (FMY), n-propanol (nPrOH), ethanol (EtOH) and ascorbic acid (AA). The as-prepared materials were physically characterised by energy dispersive X-ray (EDS), X-ray diffraction (XRD) and transmission electronic microscopy (TEM), in order to determine its composition and morphological characteristics. The catalytic activity towards ORR was assessed by means of electrochemical techniques as rotating disc electrode (RDE) and cyclic voltammetry (CV).
Hill, Melinda Lou. "Polymeric and Polymer/Inorganic Composite Membranes for Proton Exchange Membrane Fuel Cells". Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/37597.
Pełny tekst źródłaPh. D.
Todd, Devin Garret Zech. "Novel transport layer characterization and synthesis for proton exchange membrane fuel cells". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56235.
Pełny tekst źródłaApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Ahn, Jong-Woo. "Design and analysis of air and coolant control for a polymer electrolyte membrane fuel cell". Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/AHN_JONGWOO_52.pdf.
Pełny tekst źródłaChristian, Joel B. "Tungsten fuel cell catalysts". Diss., Online access via UMI:, 2007.
Znajdź pełny tekst źródłaAdigoppula, Vinay Kumar. "A study on Nafion® nanocomposite membranes for proton exchange membrane fuel cells". Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/3940.
Pełny tekst źródłaThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering.
Snyder, Loren E. "A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells". Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/3115.
Pełny tekst źródłaAlrweg, Mohmad Salem. "Investigation into the performance and acoustical characteristics of proton exchange membrane fuel cells". Thesis, Manchester Metropolitan University, 2017. http://e-space.mmu.ac.uk/621246/.
Pełny tekst źródłaGupta, Gaurav. "Bimetallic Platinum-Chromium Nanoparticles as electrocatalysts for proton exchange membrane fuel cells (PEMFCs)". Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5527/.
Pełny tekst źródłaCarrère, Pierre. "Modelling and numerical simulation of water transfer in Proton Exchange Membrane Fuel Cells". Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0123.
Pełny tekst źródłaWater management is considered as a key issue in order to improve Proton Exchange Membrane Fuel Cells efficiency and durability. One of the critical components regarding this issue is the athode Gas Diffusion Layer (GDL). In this context, the main goal of the PhD work is to improve the understanding of the mechanisms responsible for the liquid water formation and transport in the cathode GDL. To this end, a Mixed liquid-vapour Injection Pore Network Model (MIPNM) is developed. This new model enables one to simulate the liquid water formation and transport in the cathode GDL for a larger range of operating conditions (temperature, current density and channel relative humidity) than in previous works. Different regimes of water formation and transport are identified and described. In a second part, the PhD work focus on the impact of the GDL hydrophobic treatment. Currently commercialized GDLs are rendered hydrophobic by coating Polytetrafluoroethylene (PTFE) onto the hydrophilic carbon fibres. It has been reported that the coating can be nonuniform on fresh GDLs and also that the coating can be altered during the operation of the fuel cell. The impact of these two phenomena on the liquid water distribution and on the reactant gas access to the catalyst layer is studied using the MIPNM for mixed wettability networks. In a third part, a work aiming at the improvement of PEMFC efficiency is developed. The goal is to optimise the reactant gas access to the catalyst layer by modifying the microstructure of GDLs. This is performed by coupling the PNM with a genetic algorithm. In a complementary study, the improvement of the reactant gas access is studied through modifications of the GDL wettability properties. Finally, a 1D model of the whole anode-cathode assembly is developed so as to take into account both anode and cathode operating conditions. This 1D model is coupled with the MIPNM in order to assess the impact of the anode operating conditions on the liquid water distribution in the cathode GDL
Wang, Hang. "Synthesis and Characterization of Multiblock Copolymers for Proton Exchange Membrane Fuel Cells (PEMFC)". Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/26026.
Pełny tekst źródłaPh. D.
Siroma, Zyun. "Studies on local reactions and degradation mechanisms of proton exchange membrane fuel cells". 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136371.
Pełny tekst źródłaChen, Cheng. "Membrane degradation studies in PEMFCs". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29712.
Pełny tekst źródłaCommittee Chair: Fuller, Thomas; Committee Member: Beckham, Haskell; Committee Member: Hess, Dennis; Committee Member: Koros, William; Committee Member: Meredith, Carson. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Sombatmankhong, Korakot. "The development and characterisation of microfabricated polymer electrolyte membrane fuel cells". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610026.
Pełny tekst źródła