Gotowa bibliografia na temat „Proton radiation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Proton radiation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Proton radiation"

1

Bussière, Marc R., i Judith A. Adams. "Treatment Planning for Conformal Proton Radiation Therapy". Technology in Cancer Research & Treatment 2, nr 5 (październik 2003): 389–99. http://dx.doi.org/10.1177/153303460300200504.

Pełny tekst źródła
Streszczenie:
Clinical results from various trials have demonstrated the viability of protons in radiation therapy and radiosurgery. This has motivated a few large medical centers to design and build expensive hospital based proton facilities based proton facilities (current cost estimates for a proton facility is around $100 million). Until this development proton therapy was done using retrofitted equipment originally designed for nuclear experiments. There are presently only three active proton therapy centers in the United States, 22 worldwide. However, more centers are under construction and being proposed in the US and abroad. The important difference between proton and x-ray therapy is in the dose distribution. X-rays deposit most of their dose at shallow depths of a few centimeters with a gradual decay with depth in the patient. Protons deliver most of their dose in the Bragg peak, which can be delivered at most clinically required depths followed by a sharp fall-off. This sharp falloff makes protons sensitive to variations in treatment depths within patients. Treatment planning incorporates all the knowledge of protons into a process, which allows patients to be treated accurately and reliably. This process includes patient immobilization, imaging, targeting, and modeling of planned dose distributions. Although the principles are similar to x-ray therapy some significant differences exist in the planning process, which described in this paper. Target dose conformality has recently taken on much momentum with the advent of intensity modulated radiation therapy (IMRT) with photon beams. Proton treatments provide a viable alternative to IMRT because they are inherently conformal avoiding normal tissue while irradiating the intended targets. Proton therapy will soon bring conformality to a new high with the development of intensity modulated proton therapy (IMPT). Future challenges include keeping the cost down, increasing access to conventional proton therapy as well as the clinical implementation of IMPT. Computing advances are making Monte Carlo techniques more accessible to treatment planning for all modalities including proton therapy. This technique will allow complex delivery configurations to be properly modeled in a clinical setting.
Style APA, Harvard, Vancouver, ISO itp.
2

Vanderwaeren, Laura, Rüveyda Dok, Kevin Verstrepen i Sandra Nuyts. "Clinical Progress in Proton Radiotherapy: Biological Unknowns". Cancers 13, nr 4 (3.02.2021): 604. http://dx.doi.org/10.3390/cancers13040604.

Pełny tekst źródła
Streszczenie:
Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Style APA, Harvard, Vancouver, ISO itp.
3

Graber, Jerome, Reed Ritterbusch i Lia Halasz. "NIMG-64. DISTINCT IMAGING PATTERNS OF PSEUDOPROGRESSION IN GLIOMA PATIENTS FOLLOWING PROTON VERSUS PHOTON RADIATION THERAPY". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii162. http://dx.doi.org/10.1093/neuonc/noaa215.677.

Pełny tekst źródła
Streszczenie:
Abstract PURPOSE Radiologic Assessment in Neuro-Oncology (RANO) criteria define pseudoprogression (Ps) after photon radiation for gliomas, as occurring less than twelve weeks from radiation, within the high dose radiation field. However, some patients receiving proton manifest lesions that appear subjectively different from photon Ps based on timing and location (more than six months from radiation and deeper to the prior tumor), which would be called tumor progression by RANO. We retrospectively reviewed MRI changes after proton or photon radiation for gliomas. We propose criteria to characterize proton pseudoprogression (ProPs) distinct from photon pseudoprogression or tumor progression. METHODS Post-treatment MRIs of patients with gliomas were reviewed, along with clinical and pathological data. 77 proton patients were reviewed for the presence of ProPs, and 64 photon patients were reviewed for imaging changes. Data collected included the location, timing, and morphology of the lesions, tumor type, chemotherapy, and clinical symptoms. RESULTS 16 (21%) of the patients who received protons had imaging changes unique to protons, at a mean of 14.6 months after radiation. We established the following criteria to characterize ProPs: not immediately in or adjacent to the resection cavity; ~ 2cm opposite from target beam entry; can resolve without treatment; subjectively multifocal, patchy, small (< 1cm). None of the photon patients had lesions that met our criteria for ProPs (p< 0.001). CONCLUSION Patients who receive protons can have a unique subtype of pseudoprogression (Ps), which we refer to as proton pseudoprogression (or ProPs). These lesions could be mistaken for tumor progression, but typically resolve spontaneously. ProPs can possibly be explained by the increased relative biological effectiveness of protons and beam angle selection which may deposit at ~2cm deep to the target. Recognizing these lesions can prevent unnecessary treatment for mistaken tumor progression, especially in the context of clinical trials that include proton.
Style APA, Harvard, Vancouver, ISO itp.
4

Slater, Jerry D. "Clinical Applications of Proton Radiation Treatment at Loma Linda University: Review of a Fifteen-year Experience". Technology in Cancer Research & Treatment 5, nr 2 (kwiecień 2006): 81–89. http://dx.doi.org/10.1177/153303460600500202.

Pełny tekst źródła
Streszczenie:
Proton radiation therapy has been used at Loma Linda University Medical Center for 15 years, sometimes in combination with photon irradiation, surgery, and chemotherapy, but often as the sole modality. Our initial experience was based on established studies showing the utility of protons for certain management problems, but since then we have engaged in a planned program to exploit the capabilities of proton radiation and expand its applications in accordance with progressively accumulating clinical data. Our cumulative experience has confirmed that protons are a superb tool for delivering conformal radiation treatments, enabling delivery of effective doses of radiation and sparing normal tissues from radiation exposure.
Style APA, Harvard, Vancouver, ISO itp.
5

Beketov, Yevgeniy, Olga Lepilina, Vyacheslav Saburov, Aleksandr Chernukha, Liliya Ulyanenko, Olga Golovanova, Yegor Malakhov, Nadezhda Arguchinskaya, Yelena Isaeva i Stepan Ulyanenko. "BIOLOGICAL EFFICIENCY OF THE PROTON SCANNING BEAM OF THE THERAPEUTIC COMPLEX "PROMETHEUS" OF THE A.F. TSYB MEDICAL RADIOLOGICAL RESEARCH CENTER IN STUDIES ON CELL CULTURE OF MURINE MELANOMA B-16". Problems in oncology 64, nr 5 (1.05.2018): 678–82. http://dx.doi.org/10.37469/0507-3758-2018-64-5-678-682.

Pełny tekst źródła
Streszczenie:
The basis for the use of protons for radiation therapy tasks is a fixed conventional value of their relative biological efficiency equal to 1,1. Numerous studies have showed that RBE of proton radiation is not a constant value and depends on a number of factors. The purpose of this study was to determine RBE of a thin scanning proton beam at the center of the distributed Bragg peak in experiments on the culture of murine B-16 melanoma cells. The cell suspension was irradiated in an aqueous phantom by a horizontal proton beam from three directions (0,90 and 180°) in doses from 2 to 8 Gy. Modulation of the energy of proton radiation was 47,5÷92,0 MeV. RBE protons were determined from the clonogenic activity of the cells compared with 60Co gamma quanta. A linear-quadratic model was used to construct the dose dependencies. Obtained RBE values of proton radiation (LET 3÷8 keV/μm) differed in the big party from the generally accepted value and was at the level of 10% survival rate of 1.5. The results obtained generally coincided with data of foreign authors performed on different facilities.
Style APA, Harvard, Vancouver, ISO itp.
6

Pae, K. H., I. W. Choi i J. Lee. "Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime". Laser and Particle Beams 29, nr 1 (5.01.2011): 11–16. http://dx.doi.org/10.1017/s0263034610000674.

Pełny tekst źródła
Streszczenie:
AbstractThe characteristics of high energy protons generated from thin carbon-proton mixture targets via circularly polarized intense laser pulses are investigated using two-dimensional particle-in-cell simulations. It is found that the density ratio n between protons and carbon ions plays a key role in determining the acceleration dynamics. For low n values, the protons are mainly accelerated by the radiation pressure acceleration mechanism, resulting in a quasi-monoenergetic energy spectrum. The radiation pressure acceleration mechanism is enhanced by the directed-Coulomb-explosion of carbon ions which gives a high proton maximum energy, though a large energy spread, for high n values. From a proton acceleration point of view, the role of heavy ions is very important. The fact that the proton energy spectrum is controllable based on the target composition is especially useful in real experimental environments.
Style APA, Harvard, Vancouver, ISO itp.
7

Rich, Tyvin, Dongfeng Pan, Mahendra Chordia, Cynthia Keppel, David Beylin, Pavel Stepanov, Mira Jung, Dalong Pang, Scott Grindrod i Anatoly Dritschilo. "18Oxygen Substituted Nucleosides Combined with Proton Beam Therapy: Therapeutic Transmutation In Vitro". International Journal of Particle Therapy 7, nr 4 (1.03.2021): 11–18. http://dx.doi.org/10.14338/ijpt-d-20-00036.1.

Pełny tekst źródła
Streszczenie:
Abstract Purpose Proton therapy precisely delivers radiation to cancers to cause damaging strand breaks to cellular DNA, kill malignant cells, and stop tumor growth. Therapeutic protons also generate short-lived activated nuclei of carbon, oxygen, and nitrogen atoms in patients as a result of atomic transmutations that are imaged by positron emission tomography (PET). We hypothesized that the transition of 18O to 18F in an 18O-substituted nucleoside irradiated with therapeutic protons may result in the potential for combined diagnosis and treatment for cancer with proton therapy. Materials and Methods Reported here is a feasibility study with a therapeutic proton beam used to irradiate H218O to a dose of 10 Gy produced by an 85 MeV pristine Bragg peak. PET imaging initiated >45 minutes later showed an 18F decay signal with T1/2 of ∼111 minutes. Results The 18O to 18F transmutation effect on cell survival was tested by exposing SQ20B squamous carcinoma cells to physiologic 18O-thymidine concentrations of 5 μM for 48 hours followed by 1- to 9-Gy graded doses of proton radiation given 24 hours later. Survival analyses show radiation sensitization with a dose modification factor (DMF) of 1.2. Conclusions These data support the idea of therapeutic transmutation in vitro as a biochemical consequence of proton activation of 18O to 18F in substituted thymidine enabling proton radiation enhancement in a cancer cell. 18O-substituted molecules that incorporate into cancer targets may hold promise for improving the therapeutic window of protons and can be evaluated further for postproton therapy PET imaging.
Style APA, Harvard, Vancouver, ISO itp.
8

Dzhuzha, Dmitry. "Charged particles therapy in radiation oncology". Radiation Diagnostics, Radiation Therapy, nr 1 (2020): 39–49. http://dx.doi.org/10.37336/2707-0700-2020-1-4.

Pełny tekst źródła
Streszczenie:
The physical and biological features of using protons and heavy ions in the treatment of malignant tumours were reviewed. It is showed that proton therapy is an effective method for treatment of malignant tumours, which has certain benefits comparing photon therapy. This modality may be recommended to 10-15 % of oncological patients. Carbon ion radiation therapy is especially perspective as it has local relative biological effectiveness till 2,0-3,5. The clinical efficacy of charged particles therapy at most expansive tumours was revealed. The cost efficacy of this type of radiation therapy was given. Key words: proton therapy, ion therapy, charged particles therapy, clinical efficacy of charged particles therapy.
Style APA, Harvard, Vancouver, ISO itp.
9

Romero, Gustavo E. "The non-thermal broadband spectral energy distribution of radio galaxies". Proceedings of the International Astronomical Union 7, S284 (wrzesień 2011): 407–10. http://dx.doi.org/10.1017/s1743921312009520.

Pełny tekst źródła
Streszczenie:
AbstractI present a model for the non-thermal production of electromagnetic radiation in the jets of radio galaxies. The model goes far beyond the simple one-zone models usually applied to these sources. The transport equation is solved in the co-moving frame of the jet, taken into account the inhomogeneous structure of the outflow. Energy distributions for all types of particles are then obtained in a self-consistent way, including protons, electrons, and secondaries. The spectral energy distribution resulting from all relevant radiative processes is computed, including synchrotron radiation, relativistic Bremsstrahlung, proton-proton collisions and subsequent decays, photo-meson production, radiation from pairs formed by photon absorption and injection from decays, as well as direct pair production. Absorbing fields in the host galaxy are considered when computing the final SED. The model is applied to Centaurus A and compared with the available multi-wavelength data.
Style APA, Harvard, Vancouver, ISO itp.
10

Solodky, V. A., T. R. Izmailov i P. V. Polushkin. "COMPARISON OF THE EFFECTIVENESS OF PROTON AND PHOTON THERAPY IN PATIENTS WITH BRAIN TUMORS". Siberian journal of oncology 20, nr 2 (2.05.2021): 127–35. http://dx.doi.org/10.21294/1814-4861-2021-20-2-127-135.

Pełny tekst źródła
Streszczenie:
Owing to the development of molecular genetics, the role of radiation therapy and chemotherapy in treatment of patients with glioma (WHO Grade I–IV) has become more understandable. The overall survival among glioma patients has increased. As overall survival increases, oncologists are more likely to detect manifestations of late radiation toxicity that has a huge impact on Quality of Life in patients who have undergone radiation therapy in the past. In this regard, the question of finding more adequate radiation therapy techniques remains relevant. photon radiation therapy is the standard method; however, considering dosimetric advantages of proton therapy over photon therapy, its widespread use can potentially lead to the increased overall survival, decreased number of late radiation-induced complications and improved quality of life in the post-radiation period. This article presents some comparative characteristics of proton and photon radiation therapy in patients with gliomas (WHO Grade I–IV). dosimetry characteristics of protons in tissues were compared, data showing differences in survival of patients treated with photons versus patients treated with protons were presented, and general information on early and late radiation-induced toxicity arising from the treatment by these methods was disclosed.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Proton radiation"

1

Roberts, Amy. "Investigating proton pairing in 76Se with two-proton transfer onto 74Ge". Thesis, University of Notre Dame, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3585264.

Pełny tekst źródła
Streszczenie:

The current experimental effort to detect neutrinoless double beta decay (0νββ) has encouraged significant interest in understanding the nuclei that are candidates for the observation of this process. The goal of this thesis is to contribute to the current body of work on the germanium isotopes near 76Ge, a candidate nucleus currently being used by several large-scale searches for 0νββ. Single-nucleon transfer experiments have been very successful in determining the occupancies of the valence shells in the parent and daughter nuclei 76Ge and 76Se. However, understanding the ground-state pairing of neutrons in 76Ge and protons in 76Se is also crucial because 0νββ converts correlated neutron pairs to correlated proton pairs. Neutron pairing in 76Ge has been found to be concentrated almost exclusively in the ground state, but studies on the tellurium isotopes have indicated that a fully neutron-paired ground state does not constrain the distribution of proton-pairing strength. This work uses the (3He,n) transfer reaction with a 74Ge target to investigate the proton-pairing strength distribution in 76Se. It is found that proton pairs transfer predominantly to the ground state of 76Se. Proton-pair transfer to excited 0+ states in 76Se is determined to be less than 4–8% of the ground-state pair-transfer strength.

Style APA, Harvard, Vancouver, ISO itp.
2

Johanson, Jan. "Two-pion production in proton-proton collisions near threshold". Doctoral thesis, Uppsala University, Department of Nuclear and Particle Physics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-507.

Pełny tekst źródła
Streszczenie:

Two-pion production reactions in proton-proton collisions have been studied using the PROMICE/WASA detector and an internal cluster gas-jet target at the CELSIUS storage ring in Uppsala. Three out of the four isospin-independent reaction channels have been measured at several energies in the intermediate and near threshold energy region. Important parts of the analysis include the identification of neutral pions from the invariant mass of the decay gammas, the identification of positive pions with the delayed pulse technique and the use of Monte Carlo simulations to understand the detector response. The total cross sections for the pp®ppπ+π-, the pp®ppπ0π0 and the pp®pnπ+π0 reactions are presented at beam energies ranging from 650 to 775 MeV.

The production mechanism for two-pion production near threshold seems to be dominated by resonance production. The contribution from the non-resonant terms alone can not reproduce the total cross sections. In most models, two-pion production is governed by the δ and the N* resonances in either one or both of the participating nucleons.

The N*(1440)®N(πp)T=0Swave transition has been suggested as the dominating production mechanism for two-pion production in proton-proton collisions. However, the total cross sections presented in this thesis show that other production mechanisms also must give large contributions.

Style APA, Harvard, Vancouver, ISO itp.
3

Beaumier, Michael John. "Probing the Spin Structure of the Proton Using Polarized Proton-Proton Collisions and the Production of W Bosons". Thesis, University of California, Riverside, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10181454.

Pełny tekst źródła
Streszczenie:

This thesis discusses the process of extracting the longitudinal asymmetry, $A_L

{W\pm}$, describing $W\rightarrow\mu$ production in forward kinematic regimes. This asymmetry is used to constrain our understanding of the polarized parton distribution functions characterizing $\bar{u}$ and $\bar{d}$ sea quarks in the proton. This asymmetry will be used to constrain the overall contribution of the sea-quarks to the total proton spin. The asymmetry is evaluated over the pseudorapidity range of the PHENIX Muon Arms, $2.1 < |\eta|2.6$, for longitudinally polarized proton-proton collisions at 510 GeV $\sqrt{s}$. In particular, I will discuss the statistical methods used to characterize real muonic $W$ decays and the various background processes is presented, including a discussion of likelihood event selection and the Extended Unbinned Maximum Likelihood fit. These statistical methods serve estimate the yields of $W$ muonic decays, which are used to calculate the longitudinal asymmetry.

Style APA, Harvard, Vancouver, ISO itp.
4

Salhani, Maat Bilhal. "Backprojection-then-filtering reconstruction along the most likely path in proton computed tomography". Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189495.

Pełny tekst źródła
Streszczenie:
The backprojection-then-filtering algorithm was applied to proton CT data to reconstruct a map of proton stopping power relative to water (RSP) in air, water and bone. Backprojections were performed along three commonly used path estimates for the proton: straight line path, cubic spline path, and most likely path. The proton CT data was obtained through simulations using the GEANT4 simulation toolkit. Two elliptical phantoms were inspected, and an accuracy of 0.2% and 0.8% was obtained for the RSP in water and bone respectively in the region of interest, while the RSP of air was significantly underestimated.
Style APA, Harvard, Vancouver, ISO itp.
5

Whitehill, Craig. "Characteristics of VPE GaAs radiation detectors after proton irradiation". Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401998.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Schneider, Tim. "Advancing the generation of proton minibeams for radiation therapy". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP069.

Pełny tekst źródła
Streszczenie:
Malgré d’importants progrès, la tolérance des tissus sains aux rayonnements demeure un facteur central en radiothérapie, limitant par exemple l’efficacité du traitement des gliomes de haute grade. La proton thérapie avec mini-faisceaux (proton minibeam radiation therapy, pMBRT) est une nouvelle stratégie thérapeutique qui a pour objectif d’améliorer la préservation des tissus sains en combinant les avantages balistiques des protons et le fractionnement spatial de la dose obtenu avec des faisceaux submillimétriques. Dans ce contexte, la pMBRT a déjà démontré sa capacité à augmenter l’index thérapeutique dans le traitement des tumeurs cérébrales de rats. Un défi important est la génération des mini-faisceaux dans un cadre clinique : contrairement à la radiothérapie conventionnelle qui utilise des faisceaux larges (diamètre d’environ 5 mm à plusieurs centimètres), les mini-faisceaux se caractérisent par un diamètre de moins d’un millimètre. Actuellement, la génération des mini-faisceaux de protons est réalisée à l’aide de collimateurs mécaniques (blocs en métal avec plusieurs fentes ou trous) ce qui comporte plusieurs inconvénients (notamment une très faible flexibilité, une réduction importante du débit de dose ainsi que la génération de particules secondaires indésirables). Une solution optimale pourrait être la génération des mini-faisceaux par focalisation magnétique. Il en découle la question principale traitée dans cette thèse : Comment la génération des mini-faisceaux de protons par focalisation magnétique peut-elle être réalisée dans un cadre clinique ? En utilisant le modèle numérique d’un pencil beam scanning nozzle (le "nozzle" est la dernière partie d’une ligne de faisceau clinique), il a été démontré que les nozzles actuels ne sont pas adéquats pour focaliser les faisceaux de protons à la taille requise, les principales raisons étant une distance focale trop grande et une présence d’air excessive. En partant de ces conclusions, un nouveau design de nozzle optimisé a été développé. Ce nouveau modèle est capable de générer des mini-faisceaux de protons par focalisation magnétique dans des conditions réalisables avec les technologies existantes. Une étude Monte Carlo a également été menée afin de comparer et de quantifier les différences entre la génération de mini-faisceaux par collimation mécanique et par focalisation magnétique. Dans un second temps, cette thèse présente une évaluation des ions d’hélium comme alternative aux protons pour la radiothérapie avec mini-faisceaux. Il a pu être démontré que les ions d’hélium peuvent être un bon compromis en offrant certains des avantages dosimétriques observés avec les ions lourds sans les risques de toxicité associés
Despite major advances over the last decades, the dose tolerance of normal tissue continues to be a central problem in radiation therapy, limiting for example the effective treatment of hypoxic tumours and high-grade gliomas. Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy, combining the improved ballistics of protons with the enhanced tissue sparing potential of submillimetric, spatially fractionated beams (minibeams), that has already demonstrated its ability to significantly improve the therapeutic index for brain cancers in rats. In contrast to conventional proton therapy which uses comparatively large beam diameters of five millimetres to several centimetres, minibeams require beam sizes of less than 1 mm which are challenging to create in a clinical context. So far, every implementation of pMBRT at clinically relevant beam energies could only be achieved with the help of mechanical collimators (metal blocks with thin slits or holes). However, this method is inefficient, inflexible and creates high levels of unwanted secondary particles. The optimal approach may therefore be the generation of minibeams through magnetic focussing.This thesis investigates how magnetically focussed proton minibeams can be realised in a clinical context. Starting from the computer model of a modern pencil beam scanning nozzle (the term "nozzle" describes the final elements of a clinical beamline), it could be shown that current nozzles will not be suitable for this task, since their large dimensions and the presence of too much air in the beam path make it impossible to focus the beam down to the required sizes. Instead, an optimised nozzle design has been developed and evaluated with clinical beam models. It could be demonstrated that this design allows the generation of proton minibeams through magnetic focussing and that the new nozzle can be used with already existing technology. Moreover, a Monte Carlo study was performed to compare and quantify the differences between magnetically focussed minibeams and mechanically collimated minibeams.Finally, as the second aspect of this thesis, helium ions were evaluated as a potential alternative to protons for minibeam radiation therapy. It could be shown that helium ions could present a good compromise exhibiting many of the dosimetric advantages of heavier ions without the risks related to normal tissue toxicities
Style APA, Harvard, Vancouver, ISO itp.
7

Handley, Stephen Michael. "Monte Carlo simulations using MCNPX of proton and anti-proton beam profiles for radiation therapy". Oklahoma City : [s.n.], 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mandelli, Elena. "Ionizing radiation detectors and their innovative application in proton therapy". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21880/.

Pełny tekst źródła
Streszczenie:
Through this thesis we wanted to present a branch of radiotherapy that uses proton beams to destroy tumors, namely proton therapy. This technique, although relatively new (1946), is rapidly spreading thanks to the advantage of being able to precisely locate the release of the therapeutic dose of radiation. After a brief presentation of the discovery of ionizing radiations’ history and their possible applications, we focused on the study of the protons’ behavior when they interact with matter, going to show why they are so advantageous, by studying different quantities such as stopping power, flow rate, flow rate variation, multiple coulomb scattering and proton RBE. In fact, proton therapy represents a new and important therapeutic approach that allows a large part of healthy tissue to absorb less dose than in conventional therapies that use photons or electrons. The most interesting aspect of this thesis, and still with a broad future perspective, concerns the different types of detectors used in this therapy, which play a fundamental role in the progress of nuclear medicine, leading to ever better methods of prevention, diagnosis and treatment of illnesses. The future goal of this therapy is to develop new detectors, that are more equivalent to human tissues, both in behavior and detections, in order to obtain always better performances.
Style APA, Harvard, Vancouver, ISO itp.
9

Taylor, Paul Alan. "Proton radiation effects on space solar cell structures and materials". Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Blaikley, Helen. "Measurement of the proton structure from 1996 and 1997 radiative ep scattering data using the ZEUS detector". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301844.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Proton radiation"

1

H, Thomas Ralph. Radiological safety aspects of the operation of proton accelerators. Vienna: International Atomic Energy Agency, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Keegan, Raymond P. LET spectrum generation and proton induced secondary contribution to total dose measured in low earth orbit. Dublin: University College Dublin, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Galand, Marina. Radiation damage of the proton MEPED detector on POES (TIROS/NOAA) satellites. Silver Spring, MD: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Space Environment Center, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Becher, Jacob. The simulated space proton environment for radiation effects on Space Telescope Imaging Spectrograph (STIS). Norfolk, Va: Old Dominion University Research Foundation, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Weinberg, Irving. Performance and temperature dependencies of proton irradiated n/p and p/n GaAs and n/p silicon cells. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Huston, S. L. Space environment effects: Low-altitude trapped radiation model. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Weinberg, Irving. Effects of electron and proton irradiations on n/p and p/n GaAs cells grown by MOCVD. [Washington, D.C.]: National Aeronautics and Space Administration, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Weinberg, Irving. Potential for use of Indium phosphide solar cells in the space radiation environment. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Prague, Czech Republic) SPIE Optics +. Optoelectronics (2011. Laser acceleration of electrons, protons, and ions: And medical applications of laser-generated secondary sources of radiation and particles : 18-20 April 2011, Prague, Czech Republic. Bellingham, Washington: SPIE, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

International Commission on Radiation Units and Measurements., red. Clinical proton dosimetry. Bethesda, Md: International Commission on Radiation Units and Measurements, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Proton radiation"

1

Mallick, Supriya. "Proton Therapy". W Practical Radiation Oncology, 79–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0073-2_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Daugherty, Larry C., Brandon J. Fisher, Christin A. Knowlton, Michelle Kolton Mackay, David E. Wazer, Anthony E. Dragun, James H. Brashears i in. "Proton Therapy". W Encyclopedia of Radiation Oncology, 675–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Xinyuan, i Tianyu Zhao. "Proton Radiography and Proton Computed Tomography". W Radiation Therapy Dosimetry: A Practical Handbook, 457–64. Names: Darafsheh, Arash, editor. Title: Radiation therapy dosimetry : a practical handbook / edited by Arash Darafsheh. Description: First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781351005388-29.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Depauw, Nicolas, Mark Pankuch, Estelle Batin, Hsiao-Ming Lu, Oren Cahlon i Shannon M. MacDonald. "Techniques for Proton Radiation". W Radiation Therapy Techniques and Treatment Planning for Breast Cancer, 119–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40392-2_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zeng, Chuan, Richard A. Amos, Brian Winey, Chris Beltran, Ziad Saleh, Zelig Tochner, Hanne Kooy i Stefan Both. "Proton Treatment Planning". W Practical Guides in Radiation Oncology, 45–105. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42478-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hall, Matthew D., Daniel J. Indelicato, Ronny Rotondo i Julie A. Bradley. "Proton Therapy for Pediatric Malignancies". W Pediatric Radiation Oncology, 363–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-43545-9_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kim, Michele M., i Eric S. Diffenderfer. "Proton Therapy Dosimetry". W Radiation Therapy Dosimetry: A Practical Handbook, 393–412. Names: Darafsheh, Arash, editor. Title: Radiation therapy dosimetry : a practical handbook / edited by Arash Darafsheh. Description: First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781351005388-25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ding, Xuanfeng, Haibo Lin, Jiajian Shen, Wei Zou, Katja Langen i Hsiao-Ming Lu. "Proton Treatment Delivery Techniques". W Practical Guides in Radiation Oncology, 17–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42478-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Xiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak i in. "Intensity-Modulated Proton Therapy (IMPT)". W Encyclopedia of Radiation Oncology, 384. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_626.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sahoo, Narayan, Gabriel O. Sawakuchi, Michael T. Gillin i Xiaorong R. Zhu. "Radiation Dosimetry of Proton Beams". W Particle Radiotherapy, 77–94. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2622-2_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Proton radiation"

1

Thurman-Keup, Randy. "Proton Synchrotron Radiation at Fermilab". W BEAM INSTRUMENTATION WORKSHOP 2006: Twelfth Beam Instrumentation Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2401425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Krishnan, Kamala S., Doyle G. Lahti, W. David Smith i Tina M. Averett. "Optical fiber attenuation in proton radiation". W SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, redaktor Edward W. Taylor. SPIE, 1996. http://dx.doi.org/10.1117/12.254029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kube, G., G. Priebe, Ch Wiebers i K. Wittenburg. "Proton Synchrotron Radiation Diagnostics at HERA". W BEAM INSTRUMENTATION WORKSHOP 2006: Twelfth Beam Instrumentation Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2401426.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kanofsky, Alvin S., i William J. Minford. "Radiation effects on proton-exchange waveguides". W Fibers '92, redaktor Ka-Kha Wong. SPIE, 1993. http://dx.doi.org/10.1117/12.141929.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ginet, Gregory P., Dan Madden, Bronislaw K. Dichter i Donald H. Brautigam. "Energetic Proton Maps for the South Atlantic Anomaly". W 2007 IEEE Radiation Effects Data Workshop. IEEE, 2007. http://dx.doi.org/10.1109/redw.2007.4342532.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Irom, Farokh, Gregory R. Allen i Bernard G. Rax. "Proton Displacement Damage Measurements in Commercial Optocouplers". W 2015 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2015. http://dx.doi.org/10.1109/redw.2015.7336727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Davis, S. C., R. Koga i J. S. George. "Proton and Heavy Ion Testing of the Microsemi Igloo2 FPGA". W 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hansen, D. L. "Proton Cross-Sections from Heavy-Ion Data in GaAs Devices". W 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ningyue Jiang, Zhenqiang Ma, Pingxi Ma i M. Racanelli. "Proton Radiation Tolerance of SiGe Power HBTs". W 2006 International SiGe Technology and Device Meeting. IEEE, 2006. http://dx.doi.org/10.1109/istdm.2006.246592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Silverglate, Peter R., Edward F. Zalewski i Peter Petrone III. "Proton-induced radiation effects on optical glasses". W San Diego '92, redaktorzy James B. Breckinridge i Alexander J. Marker III. SPIE, 1993. http://dx.doi.org/10.1117/12.138944.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Proton radiation"

1

Cox, Ann. Proton Radiation Studies. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2002. http://dx.doi.org/10.21236/ada403718.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cameron, John M. Development of the Midwest Proton Radiation Institute for the treatment of cancer and other diseases using proton radiation therapy. Final report. Office of Scientific and Technical Information (OSTI), luty 2003. http://dx.doi.org/10.2172/809081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhu, Ren-Yuan, Liyuan Zhang, Fan Yang, Eric Ramberg i Todd Nebel. Technical Scope of Work: Proton Induced Radiation Damage in Crystal Scintillators. Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1296766.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Liu, Chuan S., i Xi Shao. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation. Office of Scientific and Technical Information (OSTI), czerwiec 2016. http://dx.doi.org/10.2172/1256958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Awschalom, M. Radiation shielding for 250 MeV protons. Office of Scientific and Technical Information (OSTI), kwiecień 1987. http://dx.doi.org/10.2172/6491164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

GREENE, G. A. AGS EXPERIMENT 945A RADIATION DAMAGE IN METALS AT LIQUID HELIUM TEMPERATURE BY GEV PROTONS. Office of Scientific and Technical Information (OSTI), sierpień 1999. http://dx.doi.org/10.2172/750770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pratt, L. R., A. E. Garcia i G. Hummer. Computer simulation of protein solvation, hydrophobic mapping, and the oxygen effect in radiation biology. Office of Scientific and Technical Information (OSTI), sierpień 1997. http://dx.doi.org/10.2172/524859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Johnson, N. F., D. M. Gurule i T. R. Carpenter. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent. Office of Scientific and Technical Information (OSTI), grudzień 1995. http://dx.doi.org/10.2172/381381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Simos, Nikolaos. Long Baseline Neutrino Experiment (LBNE) Target Material Radiation Damage from Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility. Office of Scientific and Technical Information (OSTI), luty 2016. http://dx.doi.org/10.2172/1473632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Woloschak, G. E., P. Felcher i Chin-Mei Chang-Liu. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements. Office of Scientific and Technical Information (OSTI), maj 1994. http://dx.doi.org/10.2172/10148882.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii