Gotowa bibliografia na temat „Proton radiation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Proton radiation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Proton radiation"
Bussière, Marc R., i Judith A. Adams. "Treatment Planning for Conformal Proton Radiation Therapy". Technology in Cancer Research & Treatment 2, nr 5 (październik 2003): 389–99. http://dx.doi.org/10.1177/153303460300200504.
Pełny tekst źródłaVanderwaeren, Laura, Rüveyda Dok, Kevin Verstrepen i Sandra Nuyts. "Clinical Progress in Proton Radiotherapy: Biological Unknowns". Cancers 13, nr 4 (3.02.2021): 604. http://dx.doi.org/10.3390/cancers13040604.
Pełny tekst źródłaGraber, Jerome, Reed Ritterbusch i Lia Halasz. "NIMG-64. DISTINCT IMAGING PATTERNS OF PSEUDOPROGRESSION IN GLIOMA PATIENTS FOLLOWING PROTON VERSUS PHOTON RADIATION THERAPY". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii162. http://dx.doi.org/10.1093/neuonc/noaa215.677.
Pełny tekst źródłaSlater, Jerry D. "Clinical Applications of Proton Radiation Treatment at Loma Linda University: Review of a Fifteen-year Experience". Technology in Cancer Research & Treatment 5, nr 2 (kwiecień 2006): 81–89. http://dx.doi.org/10.1177/153303460600500202.
Pełny tekst źródłaBeketov, Yevgeniy, Olga Lepilina, Vyacheslav Saburov, Aleksandr Chernukha, Liliya Ulyanenko, Olga Golovanova, Yegor Malakhov, Nadezhda Arguchinskaya, Yelena Isaeva i Stepan Ulyanenko. "BIOLOGICAL EFFICIENCY OF THE PROTON SCANNING BEAM OF THE THERAPEUTIC COMPLEX "PROMETHEUS" OF THE A.F. TSYB MEDICAL RADIOLOGICAL RESEARCH CENTER IN STUDIES ON CELL CULTURE OF MURINE MELANOMA B-16". Problems in oncology 64, nr 5 (1.05.2018): 678–82. http://dx.doi.org/10.37469/0507-3758-2018-64-5-678-682.
Pełny tekst źródłaPae, K. H., I. W. Choi i J. Lee. "Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime". Laser and Particle Beams 29, nr 1 (5.01.2011): 11–16. http://dx.doi.org/10.1017/s0263034610000674.
Pełny tekst źródłaRich, Tyvin, Dongfeng Pan, Mahendra Chordia, Cynthia Keppel, David Beylin, Pavel Stepanov, Mira Jung, Dalong Pang, Scott Grindrod i Anatoly Dritschilo. "18Oxygen Substituted Nucleosides Combined with Proton Beam Therapy: Therapeutic Transmutation In Vitro". International Journal of Particle Therapy 7, nr 4 (1.03.2021): 11–18. http://dx.doi.org/10.14338/ijpt-d-20-00036.1.
Pełny tekst źródłaDzhuzha, Dmitry. "Charged particles therapy in radiation oncology". Radiation Diagnostics, Radiation Therapy, nr 1 (2020): 39–49. http://dx.doi.org/10.37336/2707-0700-2020-1-4.
Pełny tekst źródłaRomero, Gustavo E. "The non-thermal broadband spectral energy distribution of radio galaxies". Proceedings of the International Astronomical Union 7, S284 (wrzesień 2011): 407–10. http://dx.doi.org/10.1017/s1743921312009520.
Pełny tekst źródłaSolodky, V. A., T. R. Izmailov i P. V. Polushkin. "COMPARISON OF THE EFFECTIVENESS OF PROTON AND PHOTON THERAPY IN PATIENTS WITH BRAIN TUMORS". Siberian journal of oncology 20, nr 2 (2.05.2021): 127–35. http://dx.doi.org/10.21294/1814-4861-2021-20-2-127-135.
Pełny tekst źródłaRozprawy doktorskie na temat "Proton radiation"
Roberts, Amy. "Investigating proton pairing in 76Se with two-proton transfer onto 74Ge". Thesis, University of Notre Dame, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3585264.
Pełny tekst źródłaThe current experimental effort to detect neutrinoless double beta decay (0νββ) has encouraged significant interest in understanding the nuclei that are candidates for the observation of this process. The goal of this thesis is to contribute to the current body of work on the germanium isotopes near 76Ge, a candidate nucleus currently being used by several large-scale searches for 0νββ. Single-nucleon transfer experiments have been very successful in determining the occupancies of the valence shells in the parent and daughter nuclei 76Ge and 76Se. However, understanding the ground-state pairing of neutrons in 76Ge and protons in 76Se is also crucial because 0νββ converts correlated neutron pairs to correlated proton pairs. Neutron pairing in 76Ge has been found to be concentrated almost exclusively in the ground state, but studies on the tellurium isotopes have indicated that a fully neutron-paired ground state does not constrain the distribution of proton-pairing strength. This work uses the (3He,n) transfer reaction with a 74Ge target to investigate the proton-pairing strength distribution in 76Se. It is found that proton pairs transfer predominantly to the ground state of 76Se. Proton-pair transfer to excited 0+ states in 76Se is determined to be less than 4–8% of the ground-state pair-transfer strength.
Johanson, Jan. "Two-pion production in proton-proton collisions near threshold". Doctoral thesis, Uppsala University, Department of Nuclear and Particle Physics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-507.
Pełny tekst źródłaTwo-pion production reactions in proton-proton collisions have been studied using the PROMICE/WASA detector and an internal cluster gas-jet target at the CELSIUS storage ring in Uppsala. Three out of the four isospin-independent reaction channels have been measured at several energies in the intermediate and near threshold energy region. Important parts of the analysis include the identification of neutral pions from the invariant mass of the decay gammas, the identification of positive pions with the delayed pulse technique and the use of Monte Carlo simulations to understand the detector response. The total cross sections for the pp®ppπ+π-, the pp®ppπ0π0 and the pp®pnπ+π0 reactions are presented at beam energies ranging from 650 to 775 MeV.
The production mechanism for two-pion production near threshold seems to be dominated by resonance production. The contribution from the non-resonant terms alone can not reproduce the total cross sections. In most models, two-pion production is governed by the δ and the N* resonances in either one or both of the participating nucleons.
The N*(1440)®N(πp)T=0S−wave transition has been suggested as the dominating production mechanism for two-pion production in proton-proton collisions. However, the total cross sections presented in this thesis show that other production mechanisms also must give large contributions.
Beaumier, Michael John. "Probing the Spin Structure of the Proton Using Polarized Proton-Proton Collisions and the Production of W Bosons". Thesis, University of California, Riverside, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10181454.
Pełny tekst źródłaThis thesis discusses the process of extracting the longitudinal asymmetry, $A_L
{W\pm}$, describing $W\rightarrow\mu$ production in forward kinematic regimes. This asymmetry is used to constrain our understanding of the polarized parton distribution functions characterizing $\bar{u}$ and $\bar{d}$ sea quarks in the proton. This asymmetry will be used to constrain the overall contribution of the sea-quarks to the total proton spin. The asymmetry is evaluated over the pseudorapidity range of the PHENIX Muon Arms, $2.1 < |\eta|2.6$, for longitudinally polarized proton-proton collisions at 510 GeV $\sqrt{s}$. In particular, I will discuss the statistical methods used to characterize real muonic $W$ decays and the various background processes is presented, including a discussion of likelihood event selection and the Extended Unbinned Maximum Likelihood fit. These statistical methods serve estimate the yields of $W$ muonic decays, which are used to calculate the longitudinal asymmetry.
Salhani, Maat Bilhal. "Backprojection-then-filtering reconstruction along the most likely path in proton computed tomography". Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189495.
Pełny tekst źródłaWhitehill, Craig. "Characteristics of VPE GaAs radiation detectors after proton irradiation". Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401998.
Pełny tekst źródłaSchneider, Tim. "Advancing the generation of proton minibeams for radiation therapy". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP069.
Pełny tekst źródłaDespite major advances over the last decades, the dose tolerance of normal tissue continues to be a central problem in radiation therapy, limiting for example the effective treatment of hypoxic tumours and high-grade gliomas. Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy, combining the improved ballistics of protons with the enhanced tissue sparing potential of submillimetric, spatially fractionated beams (minibeams), that has already demonstrated its ability to significantly improve the therapeutic index for brain cancers in rats. In contrast to conventional proton therapy which uses comparatively large beam diameters of five millimetres to several centimetres, minibeams require beam sizes of less than 1 mm which are challenging to create in a clinical context. So far, every implementation of pMBRT at clinically relevant beam energies could only be achieved with the help of mechanical collimators (metal blocks with thin slits or holes). However, this method is inefficient, inflexible and creates high levels of unwanted secondary particles. The optimal approach may therefore be the generation of minibeams through magnetic focussing.This thesis investigates how magnetically focussed proton minibeams can be realised in a clinical context. Starting from the computer model of a modern pencil beam scanning nozzle (the term "nozzle" describes the final elements of a clinical beamline), it could be shown that current nozzles will not be suitable for this task, since their large dimensions and the presence of too much air in the beam path make it impossible to focus the beam down to the required sizes. Instead, an optimised nozzle design has been developed and evaluated with clinical beam models. It could be demonstrated that this design allows the generation of proton minibeams through magnetic focussing and that the new nozzle can be used with already existing technology. Moreover, a Monte Carlo study was performed to compare and quantify the differences between magnetically focussed minibeams and mechanically collimated minibeams.Finally, as the second aspect of this thesis, helium ions were evaluated as a potential alternative to protons for minibeam radiation therapy. It could be shown that helium ions could present a good compromise exhibiting many of the dosimetric advantages of heavier ions without the risks related to normal tissue toxicities
Handley, Stephen Michael. "Monte Carlo simulations using MCNPX of proton and anti-proton beam profiles for radiation therapy". Oklahoma City : [s.n.], 2010.
Znajdź pełny tekst źródłaMandelli, Elena. "Ionizing radiation detectors and their innovative application in proton therapy". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21880/.
Pełny tekst źródłaTaylor, Paul Alan. "Proton radiation effects on space solar cell structures and materials". Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242506.
Pełny tekst źródłaBlaikley, Helen. "Measurement of the proton structure from 1996 and 1997 radiative ep scattering data using the ZEUS detector". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301844.
Pełny tekst źródłaKsiążki na temat "Proton radiation"
H, Thomas Ralph. Radiological safety aspects of the operation of proton accelerators. Vienna: International Atomic Energy Agency, 1988.
Znajdź pełny tekst źródłaKeegan, Raymond P. LET spectrum generation and proton induced secondary contribution to total dose measured in low earth orbit. Dublin: University College Dublin, 1996.
Znajdź pełny tekst źródłaGaland, Marina. Radiation damage of the proton MEPED detector on POES (TIROS/NOAA) satellites. Silver Spring, MD: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Space Environment Center, 2000.
Znajdź pełny tekst źródłaBecher, Jacob. The simulated space proton environment for radiation effects on Space Telescope Imaging Spectrograph (STIS). Norfolk, Va: Old Dominion University Research Foundation, 1992.
Znajdź pełny tekst źródłaWeinberg, Irving. Performance and temperature dependencies of proton irradiated n/p and p/n GaAs and n/p silicon cells. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaHuston, S. L. Space environment effects: Low-altitude trapped radiation model. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1998.
Znajdź pełny tekst źródłaWeinberg, Irving. Effects of electron and proton irradiations on n/p and p/n GaAs cells grown by MOCVD. [Washington, D.C.]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródłaWeinberg, Irving. Potential for use of Indium phosphide solar cells in the space radiation environment. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.
Znajdź pełny tekst źródłaPrague, Czech Republic) SPIE Optics +. Optoelectronics (2011. Laser acceleration of electrons, protons, and ions: And medical applications of laser-generated secondary sources of radiation and particles : 18-20 April 2011, Prague, Czech Republic. Bellingham, Washington: SPIE, 2011.
Znajdź pełny tekst źródłaInternational Commission on Radiation Units and Measurements., red. Clinical proton dosimetry. Bethesda, Md: International Commission on Radiation Units and Measurements, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Proton radiation"
Mallick, Supriya. "Proton Therapy". W Practical Radiation Oncology, 79–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0073-2_12.
Pełny tekst źródłaDaugherty, Larry C., Brandon J. Fisher, Christin A. Knowlton, Michelle Kolton Mackay, David E. Wazer, Anthony E. Dragun, James H. Brashears i in. "Proton Therapy". W Encyclopedia of Radiation Oncology, 675–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_28.
Pełny tekst źródłaChen, Xinyuan, i Tianyu Zhao. "Proton Radiography and Proton Computed Tomography". W Radiation Therapy Dosimetry: A Practical Handbook, 457–64. Names: Darafsheh, Arash, editor. Title: Radiation therapy dosimetry : a practical handbook / edited by Arash Darafsheh. Description: First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781351005388-29.
Pełny tekst źródłaDepauw, Nicolas, Mark Pankuch, Estelle Batin, Hsiao-Ming Lu, Oren Cahlon i Shannon M. MacDonald. "Techniques for Proton Radiation". W Radiation Therapy Techniques and Treatment Planning for Breast Cancer, 119–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40392-2_8.
Pełny tekst źródłaZeng, Chuan, Richard A. Amos, Brian Winey, Chris Beltran, Ziad Saleh, Zelig Tochner, Hanne Kooy i Stefan Both. "Proton Treatment Planning". W Practical Guides in Radiation Oncology, 45–105. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42478-1_3.
Pełny tekst źródłaHall, Matthew D., Daniel J. Indelicato, Ronny Rotondo i Julie A. Bradley. "Proton Therapy for Pediatric Malignancies". W Pediatric Radiation Oncology, 363–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-43545-9_17.
Pełny tekst źródłaKim, Michele M., i Eric S. Diffenderfer. "Proton Therapy Dosimetry". W Radiation Therapy Dosimetry: A Practical Handbook, 393–412. Names: Darafsheh, Arash, editor. Title: Radiation therapy dosimetry : a practical handbook / edited by Arash Darafsheh. Description: First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781351005388-25.
Pełny tekst źródłaDing, Xuanfeng, Haibo Lin, Jiajian Shen, Wei Zou, Katja Langen i Hsiao-Ming Lu. "Proton Treatment Delivery Techniques". W Practical Guides in Radiation Oncology, 17–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42478-1_2.
Pełny tekst źródłaXiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak i in. "Intensity-Modulated Proton Therapy (IMPT)". W Encyclopedia of Radiation Oncology, 384. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_626.
Pełny tekst źródłaSahoo, Narayan, Gabriel O. Sawakuchi, Michael T. Gillin i Xiaorong R. Zhu. "Radiation Dosimetry of Proton Beams". W Particle Radiotherapy, 77–94. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2622-2_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Proton radiation"
Thurman-Keup, Randy. "Proton Synchrotron Radiation at Fermilab". W BEAM INSTRUMENTATION WORKSHOP 2006: Twelfth Beam Instrumentation Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2401425.
Pełny tekst źródłaKrishnan, Kamala S., Doyle G. Lahti, W. David Smith i Tina M. Averett. "Optical fiber attenuation in proton radiation". W SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, redaktor Edward W. Taylor. SPIE, 1996. http://dx.doi.org/10.1117/12.254029.
Pełny tekst źródłaKube, G., G. Priebe, Ch Wiebers i K. Wittenburg. "Proton Synchrotron Radiation Diagnostics at HERA". W BEAM INSTRUMENTATION WORKSHOP 2006: Twelfth Beam Instrumentation Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2401426.
Pełny tekst źródłaKanofsky, Alvin S., i William J. Minford. "Radiation effects on proton-exchange waveguides". W Fibers '92, redaktor Ka-Kha Wong. SPIE, 1993. http://dx.doi.org/10.1117/12.141929.
Pełny tekst źródłaGinet, Gregory P., Dan Madden, Bronislaw K. Dichter i Donald H. Brautigam. "Energetic Proton Maps for the South Atlantic Anomaly". W 2007 IEEE Radiation Effects Data Workshop. IEEE, 2007. http://dx.doi.org/10.1109/redw.2007.4342532.
Pełny tekst źródłaIrom, Farokh, Gregory R. Allen i Bernard G. Rax. "Proton Displacement Damage Measurements in Commercial Optocouplers". W 2015 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2015. http://dx.doi.org/10.1109/redw.2015.7336727.
Pełny tekst źródłaDavis, S. C., R. Koga i J. S. George. "Proton and Heavy Ion Testing of the Microsemi Igloo2 FPGA". W 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115454.
Pełny tekst źródłaHansen, D. L. "Proton Cross-Sections from Heavy-Ion Data in GaAs Devices". W 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115468.
Pełny tekst źródłaNingyue Jiang, Zhenqiang Ma, Pingxi Ma i M. Racanelli. "Proton Radiation Tolerance of SiGe Power HBTs". W 2006 International SiGe Technology and Device Meeting. IEEE, 2006. http://dx.doi.org/10.1109/istdm.2006.246592.
Pełny tekst źródłaSilverglate, Peter R., Edward F. Zalewski i Peter Petrone III. "Proton-induced radiation effects on optical glasses". W San Diego '92, redaktorzy James B. Breckinridge i Alexander J. Marker III. SPIE, 1993. http://dx.doi.org/10.1117/12.138944.
Pełny tekst źródłaRaporty organizacyjne na temat "Proton radiation"
Cox, Ann. Proton Radiation Studies. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2002. http://dx.doi.org/10.21236/ada403718.
Pełny tekst źródłaCameron, John M. Development of the Midwest Proton Radiation Institute for the treatment of cancer and other diseases using proton radiation therapy. Final report. Office of Scientific and Technical Information (OSTI), luty 2003. http://dx.doi.org/10.2172/809081.
Pełny tekst źródłaZhu, Ren-Yuan, Liyuan Zhang, Fan Yang, Eric Ramberg i Todd Nebel. Technical Scope of Work: Proton Induced Radiation Damage in Crystal Scintillators. Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1296766.
Pełny tekst źródłaLiu, Chuan S., i Xi Shao. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation. Office of Scientific and Technical Information (OSTI), czerwiec 2016. http://dx.doi.org/10.2172/1256958.
Pełny tekst źródłaAwschalom, M. Radiation shielding for 250 MeV protons. Office of Scientific and Technical Information (OSTI), kwiecień 1987. http://dx.doi.org/10.2172/6491164.
Pełny tekst źródłaGREENE, G. A. AGS EXPERIMENT 945A RADIATION DAMAGE IN METALS AT LIQUID HELIUM TEMPERATURE BY GEV PROTONS. Office of Scientific and Technical Information (OSTI), sierpień 1999. http://dx.doi.org/10.2172/750770.
Pełny tekst źródłaPratt, L. R., A. E. Garcia i G. Hummer. Computer simulation of protein solvation, hydrophobic mapping, and the oxygen effect in radiation biology. Office of Scientific and Technical Information (OSTI), sierpień 1997. http://dx.doi.org/10.2172/524859.
Pełny tekst źródłaJohnson, N. F., D. M. Gurule i T. R. Carpenter. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent. Office of Scientific and Technical Information (OSTI), grudzień 1995. http://dx.doi.org/10.2172/381381.
Pełny tekst źródłaSimos, Nikolaos. Long Baseline Neutrino Experiment (LBNE) Target Material Radiation Damage from Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility. Office of Scientific and Technical Information (OSTI), luty 2016. http://dx.doi.org/10.2172/1473632.
Pełny tekst źródłaWoloschak, G. E., P. Felcher i Chin-Mei Chang-Liu. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements. Office of Scientific and Technical Information (OSTI), maj 1994. http://dx.doi.org/10.2172/10148882.
Pełny tekst źródła